-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcomputeBezier.m
45 lines (40 loc) · 1.43 KB
/
computeBezier.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
%
% Project: Approximation and Finite Elements in Isogeometric Problems
% Author: Luca Carlon
% Date: 2009.03.10
%
% Copyright (c) 2009-2021 Luca Carlon. All rights reserved.
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% This function computes the Bezier curve with control points in P
% on the domain u.
function [x, y, z] = computeBezier(P, u)
% Determine the degree.
n = length(P(:, 1));
% Determinare the dimension.
d = length(P(1, :));
% Build Bernestein polynomials.
B = inline('factorial(n)./(factorial(i).*factorial(n - i)).*u.^i.*(1 - u).^(n-i)', 'i', 'n', 'u');
% Init.
x = 0;
y = 0;
z = 0;
% Compute the value.
for i = 0:1:(n - 1)
x = x + B(i, n - 1, u).*P(i + 1, 1);
y = y + B(i, n - 1, u).*P(i + 1, 2);
if d == 3, z = z + B(i, n - 1, u).*P(i + 1, 3); end
end
endfunction