-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdemo_02_newton.m
57 lines (45 loc) · 1.4 KB
/
demo_02_newton.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
%% Newton's Method demo
% this one just "by-hand", should use loops, stopping criteria etc...
% f and f'
f = @(x) x.^5 - 3*x + 1/2
fp = @(x) 5*x.^4 - 3;
% initial guess
x0 = 0
% set xn to initial guess
xn = x0
% see more digits
format long g
% Newton step
xnew = xn - f(xn) / fp(xn); xn = xnew
% then repeat a few times
xnew = xn - f(xn) / fp(xn); xn = xnew
xnew = xn - f(xn) / fp(xn); xn = xnew
xnew = xn - f(xn) / fp(xn); xn = xnew
xnew = xn - f(xn) / fp(xn); xn = xnew
% check f(xn) is indeed small
f(xn)
% try a different initial guess and make a plot
xx = linspace(-2,7);
clf;
plot(xx,f(xx))
hold on
grid on
x0 = 0.8
xn = x0
% note this on jumps around quite a bit before settling down and
% converging
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')
xn = xn - f(xn) / fp(xn), plot(xn,f(xn),'ro')