This repository has been archived by the owner on May 25, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
limits-hack.h
396 lines (325 loc) · 13.8 KB
/
limits-hack.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is not portable code. Parts of numeric_limits<> are
* inherently machine-dependent, and this file is written for the MIPS
* architecture and the SGI MIPSpro C++ compiler. Parts of it (in
* particular, some of the characteristics of floating-point types)
* are almost certainly incorrect for any other platform.
*/
#include <blitz/wrap-climits.h>
#include <float.h>
BZ_NAMESPACE(std)
enum float_round_style {
round_indeterminate = -1,
round_toward_zero = 0,
round_to_nearest = 1,
round_toward_infinity = 2,
round_toward_neg_infinity = 3
};
enum float_denorm_style {
denorm_indeterminate = -1,
denorm_absent = 0,
denorm_present = 1
};
// Base class for all specializations of numeric_limits.
template <typename __number>
class _Numeric_limits_base {
public:
static const bool is_specialized = false;
static __number min() { return __number(); }
static __number max() { return __number(); }
static const int digits = 0;
static const int digits10 = 0;
static const bool is_signed = false;
static const bool is_integer = false;
static const bool is_exact = false;
static const int radix = 0;
static __number epsilon() { return __number(); }
static __number round_error() { return __number(); }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static __number infinity() { return __number(); }
static __number quiet_NaN() { return __number(); }
static __number signaling_NaN() { return __number(); }
static __number denorm_min() { return __number(); }
static const bool is_iec559 = false;
static const bool is_bounded = false;
static const bool is_modulo = false;
static const bool traps = false;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
#define __declare_numeric_base_member(__type, __mem) \
template <typename __number> \
const __type _Numeric_limits_base<__number>:: __mem
__declare_numeric_base_member(bool, is_specialized);
__declare_numeric_base_member(int, digits);
__declare_numeric_base_member(int, digits10);
__declare_numeric_base_member(bool, is_signed);
__declare_numeric_base_member(bool, is_integer);
__declare_numeric_base_member(bool, is_exact);
__declare_numeric_base_member(int, radix);
__declare_numeric_base_member(int, min_exponent);
__declare_numeric_base_member(int, max_exponent);
__declare_numeric_base_member(int, min_exponent10);
__declare_numeric_base_member(int, max_exponent10);
__declare_numeric_base_member(bool, has_infinity);
__declare_numeric_base_member(bool, has_quiet_NaN);
__declare_numeric_base_member(bool, has_signaling_NaN);
__declare_numeric_base_member(float_denorm_style, has_denorm);
__declare_numeric_base_member(bool, has_denorm_loss);
__declare_numeric_base_member(bool, is_iec559);
__declare_numeric_base_member(bool, is_bounded);
__declare_numeric_base_member(bool, is_modulo);
__declare_numeric_base_member(bool, traps);
__declare_numeric_base_member(bool, tinyness_before);
__declare_numeric_base_member(float_round_style, round_style);
#undef __declare_numeric_base_member
// Base class for integers.
template <typename _Int,
_Int __imin,
_Int __imax,
int __idigits = -1>
class _Integer_limits : public _Numeric_limits_base<_Int> {
public:
static const bool is_specialized = true;
static _Int min() { return __imin; }
static _Int max() { return __imax; }
static const int digits =
(__idigits < 0) ? sizeof(_Int) * CHAR_BIT - (__imin == 0 ? 0 : 1)
: __idigits;
static const int digits10 = (digits * 301) / 1000;
// log 2 = 0.301029995664...
static const bool is_signed = __imin != 0;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const bool is_bounded = true;
static const bool is_modulo = true;
};
#define __declare_integer_limits_member(__type, __mem) \
template <typename _Int, _Int __imin, _Int __imax, int __idigits> \
const __type _Integer_limits<_Int, __imin, __imax, __idigits>:: __mem
__declare_integer_limits_member(bool, is_specialized);
__declare_integer_limits_member(int, digits);
__declare_integer_limits_member(int, digits10);
__declare_integer_limits_member(bool, is_signed);
__declare_integer_limits_member(bool, is_integer);
__declare_integer_limits_member(bool, is_exact);
__declare_integer_limits_member(int, radix);
__declare_integer_limits_member(bool, is_bounded);
__declare_integer_limits_member(bool, is_modulo);
#undef __declare_integer_limits_member
// Base class for floating-point numbers.
template <typename __number,
int __Digits, int __Digits10,
int __MinExp, int __MaxExp,
int __MinExp10, int __MaxExp10,
unsigned int __InfinityWord,
unsigned int __QNaNWord, unsigned int __SNaNWord,
bool __IsIEC559,
float_round_style __RoundStyle>
class _Floating_limits : public _Numeric_limits_base<__number>
{
public:
static const bool is_specialized = true;
static const int digits = __Digits;
static const int digits10 = __Digits10;
static const bool is_signed = true;
static const int radix = 2;
static const int min_exponent = __MinExp;
static const int max_exponent = __MaxExp;
static const int min_exponent10 = __MinExp10;
static const int max_exponent10 = __MaxExp10;
static const bool has_infinity = true;
static const bool has_quiet_NaN = true;
static const bool has_signaling_NaN = true;
static const float_denorm_style has_denorm = denorm_indeterminate;
static const bool has_denorm_loss = false;
static __number infinity() {
static unsigned int _S_inf[sizeof(__number) / sizeof(int)] =
{ __InfinityWord };
return *reinterpret_cast<__number*>(&_S_inf);
}
static __number quiet_NaN() {
static unsigned int _S_nan[sizeof(__number) / sizeof(int)] =
{ __QNaNWord };
return *reinterpret_cast<__number*>(&_S_nan);
}
static __number signaling_NaN() {
static unsigned int _S_nan[sizeof(__number) / sizeof(int)] =
{ __SNaNWord };
return *reinterpret_cast<__number*>(&_S_nan);
}
static const bool is_iec559 = __IsIEC559;
static const bool is_bounded = true;
static const bool traps = true;
static const bool tinyness_before = false;
static const float_round_style round_style = __RoundStyle;
};
#define __declare_float_limits_member(__type, __mem) \
template <typename __Num, int __Dig, int __Dig10, \
int __MnX, int __MxX, int __MnX10, int __MxX10, \
unsigned int __Inf, unsigned int __QNaN, unsigned int __SNaN, \
bool __IsIEEE, float_round_style __Sty> \
const __type _Floating_limits<__Num, __Dig, __Dig10, \
__MnX, __MxX, __MnX10, __MxX10, \
__Inf, __QNaN, __SNaN,__IsIEEE, __Sty>:: __mem
__declare_float_limits_member(bool, is_specialized);
__declare_float_limits_member(int, digits);
__declare_float_limits_member(int, digits10);
__declare_float_limits_member(bool, is_signed);
__declare_float_limits_member(int, radix);
__declare_float_limits_member(int, min_exponent);
__declare_float_limits_member(int, max_exponent);
__declare_float_limits_member(int, min_exponent10);
__declare_float_limits_member(int, max_exponent10);
__declare_float_limits_member(bool, has_infinity);
__declare_float_limits_member(bool, has_quiet_NaN);
__declare_float_limits_member(bool, has_signaling_NaN);
__declare_float_limits_member(float_denorm_style, has_denorm);
__declare_float_limits_member(bool, has_denorm_loss);
__declare_float_limits_member(bool, is_iec559);
__declare_float_limits_member(bool, is_bounded);
__declare_float_limits_member(bool, traps);
__declare_float_limits_member(bool, tinyness_before);
__declare_float_limits_member(float_round_style, round_style);
#undef __declare_float_limits_member
// Class numeric_limits
// The unspecialized class.
template<typename T>
class numeric_limits : public _Numeric_limits_base<T> {};
// Specializations for all built-in integral types.
#ifndef __STL_NO_BOOL
template<>
class numeric_limits<bool>
: public _Integer_limits<bool, false, true, 0> {};
#endif /* __STL_NO_BOOL */
template<>
class numeric_limits<char>
: public _Integer_limits<char, CHAR_MIN, CHAR_MAX> {};
template<>
class numeric_limits<signed char>
: public _Integer_limits<signed char, SCHAR_MIN, SCHAR_MAX> {};
template<>
class numeric_limits<unsigned char>
: public _Integer_limits<unsigned char, 0, UCHAR_MAX> {};
#ifdef __STL_HAS_WCHAR_T
template<>
class numeric_limits<wchar_t>
: public _Integer_limits<wchar_t, INT_MIN, INT_MAX> {};
#endif
template<>
class numeric_limits<short>
: public _Integer_limits<short, SHRT_MIN, SHRT_MAX> {};
template<>
class numeric_limits<unsigned short>
: public _Integer_limits<unsigned short, 0, USHRT_MAX> {};
template<>
class numeric_limits<int>
: public _Integer_limits<int, INT_MIN, INT_MAX> {};
template<>
class numeric_limits<unsigned int>
: public _Integer_limits<unsigned int, 0, UINT_MAX> {};
template<>
class numeric_limits<long>
: public _Integer_limits<long, LONG_MIN, LONG_MAX> {};
template<>
class numeric_limits<unsigned long>
: public _Integer_limits<unsigned long, 0, ULONG_MAX> {};
#ifdef __STL_LONG_LONG
#ifdef LONG_LONG_MIN
// CYGNUS LOCAL 9/4/1998
// fixed LONGLONG to be LONG_LONG
template<>
class numeric_limits<long long>
: public _Integer_limits<long long, LONG_LONG_MIN, LONG_LONG_MAX> {};
// CYGNUS LOCAL 9/4/1998
// fixed LONGLONG to be LONG_LONG
template<>
class numeric_limits<unsigned long long>
: public _Integer_limits<unsigned long long, 0, ULONG_LONG_MAX> {};
#endif
#endif /* __STL_LONG_LONG */
// Specializations for all built-in floating-point type.
template<> class numeric_limits<float>
: public _Floating_limits<float,
FLT_MANT_DIG, // Binary digits of precision
FLT_DIG, // Decimal digits of precision
FLT_MIN_EXP, // Minimum exponent
FLT_MAX_EXP, // Maximum exponent
FLT_MIN_10_EXP, // Minimum base 10 exponent
FLT_MAX_10_EXP, // Maximum base 10 exponent
0x7f800000u, // First word of +infinity
0x7f810000u, // First word of quiet NaN
0x7fc10000u, // First word of signaling NaN
true, // conforms to iec559
round_to_nearest>
{
public:
static float min() { return FLT_MIN; }
static float denorm_min() { return FLT_MIN; }
static float max() { return FLT_MAX; }
static float epsilon() { return FLT_EPSILON; }
static float round_error() { return 0.5f; } // Units: ulps.
};
template<> class numeric_limits<double>
: public _Floating_limits<double,
DBL_MANT_DIG, // Binary digits of precision
DBL_DIG, // Decimal digits of precision
DBL_MIN_EXP, // Minimum exponent
DBL_MAX_EXP, // Maximum exponent
DBL_MIN_10_EXP, // Minimum base 10 exponent
DBL_MAX_10_EXP, // Maximum base 10 exponent
0x7ff00000u, // First word of +infinity
0x7ff10000u, // First word of quiet NaN
0x7ff90000u, // First word of signaling NaN
true, // conforms to iec559
round_to_nearest>
{
public:
static double min() { return DBL_MIN; }
static double denorm_min() { return DBL_MIN; }
static double max() { return DBL_MAX; }
static double epsilon() { return DBL_EPSILON; }
static double round_error() { return 0.5; } // Units: ulps.
};
template<> class numeric_limits<long double>
: public _Floating_limits<long double,
LDBL_MANT_DIG, // Binary digits of precision
LDBL_DIG, // Decimal digits of precision
LDBL_MIN_EXP, // Minimum exponent
LDBL_MAX_EXP, // Maximum exponent
LDBL_MIN_10_EXP,// Minimum base 10 exponent
LDBL_MAX_10_EXP,// Maximum base 10 exponent
0x7ff00000u, // First word of +infinity
0x7ff10000u, // First word of quiet NaN
0x7ff90000u, // First word of signaling NaN
false, // Doesn't conform to iec559
round_to_nearest>
{
public:
static long double min() { return LDBL_MIN; }
static long double denorm_min() { return LDBL_MIN; }
static long double max() { return LDBL_MAX; }
static long double epsilon() { return LDBL_EPSILON; }
static long double round_error() { return 4; } // Units: ulps.
};
BZ_NAMESPACE_END