We provide benchmark results on the popular Moving MNIST dataset using $10\rightarrow 10$ frames prediction setting following PredRNN. Metrics (MSE, MAE, SSIM, pSNR) of the best models are reported in three trials. Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. All methods are trained by Adam optimizer with Onecycle scheduler and single GPU.
- For a fair comparison of different methods, we provide config files in configs/mmnist.
- We also benchmark popular Metaformer architectures on SimVP with training times of 200-epoch and 2000-epoch. We provide config files in configs/mmnist/simvp.
STL Benchmarks on MMNIST
Method |
Setting |
Params |
FLOPs |
FPS |
MSE |
MAE |
SSIM |
PSNR |
Download |
ConvLSTM-S |
200 epoch |
15.0M |
56.8G |
113 |
29.80 |
90.64 |
0.9288 |
22.10 |
model | log |
ConvLSTM-L |
200 epoch |
33.8M |
127.0G |
50 |
27.78 |
86.14 |
0.9343 |
22.44 |
model | log |
PredNet |
200 epoch |
12.5M |
8.6G |
659 |
161.38 |
201.16 |
0.7783 |
14.33 |
model | log |
PhyDNet |
200 epoch |
3.1M |
15.3G |
182 |
28.19 |
78.64 |
0.9374 |
22.62 |
model | log |
PredRNN |
200 epoch |
23.8M |
116.0G |
54 |
23.97 |
72.82 |
0.9462 |
23.28 |
model | log |
PredRNN++ |
200 epoch |
38.6M |
171.7G |
38 |
22.06 |
69.58 |
0.9509 |
23.65 |
model | log |
MIM |
200 epoch |
38.0M |
179.2G |
37 |
22.55 |
69.97 |
0.9498 |
23.56 |
model | log |
MAU |
200 epoch |
4.5M |
17.8G |
201 |
26.86 |
78.22 |
0.9398 |
22.76 |
model | log |
E3D-LSTM |
200 epoch |
51.0M |
298.9G |
18 |
35.97 |
78.28 |
0.9320 |
21.11 |
model | log |
CrevNet |
200 epoch |
5.0M |
270.7G |
10 |
30.15 |
86.28 |
0.9350 |
|
model | log |
PredRNN.V2 |
200 epoch |
23.9M |
116.6G |
52 |
24.13 |
73.73 |
0.9453 |
23.21 |
model | log |
DMVFN |
200 epoch |
3.5M |
0.2G |
1145 |
123.67 |
179.96 |
0.8140 |
16.15 |
model | log |
SimVP+IncepU |
200 epoch |
58.0M |
19.4G |
209 |
32.15 |
89.05 |
0.9268 |
37.97 |
model | log |
SimVP+gSTA-S |
200 epoch |
46.8M |
16.5G |
282 |
26.69 |
77.19 |
0.9402 |
38.35 |
model | log |
TAU |
200 epoch |
44.7M |
16.0G |
283 |
24.60 |
71.93 |
0.9454 |
23.19 |
model | log |
ConvLSTM-S |
2000 epoch |
15.0M |
56.8G |
113 |
22.41 |
73.07 |
0.9480 |
23.54 |
model | log |
PredNet |
2000 epoch |
12.5M |
8.6G |
659 |
31.85 |
90.01 |
0.9273 |
21.85 |
model | log |
PhyDNet |
2000 epoch |
3.1M |
15.3G |
182 |
20.35 |
61.47 |
0.9559 |
24.21 |
model | log |
PredRNN |
2000 epoch |
23.8M |
116.0G |
54 |
26.43 |
77.52 |
0.9411 |
22.90 |
model | log |
PredRNN++ |
2000 epoch |
38.6M |
171.7G |
38 |
14.07 |
48.91 |
0.9698 |
26.37 |
model | log |
MIM |
2000 epoch |
38.0M |
179.2G |
37 |
14.73 |
52.31 |
0.9678 |
25.99 |
model | log |
MAU |
2000 epoch |
4.5M |
17.8G |
201 |
22.25 |
67.96 |
0.9511 |
23.68 |
model | log |
E3D-LSTM |
2000 epoch |
51.0M |
298.9G |
18 |
24.07 |
77.49 |
0.9436 |
23.19 |
model | log |
PredRNN.V2 |
2000 epoch |
23.9M |
116.6G |
52 |
17.26 |
57.22 |
0.9624 |
25.01 |
model | log |
SimVP+IncepU |
2000 epoch |
58.0M |
19.4G |
209 |
21.15 |
64.15 |
0.9536 |
23.99 |
model | log |
SimVP+gSTA-S |
2000 epoch |
46.8M |
16.5G |
282 |
15.05 |
49.80 |
0.9675 |
25.97 |
model | log |
TAU |
2000 epoch |
44.7M |
16.0G |
283 |
15.69 |
51.46 |
0.9661 |
25.71 |
model | log |
Benchmark of MetaFormers Based on SimVP (MetaVP)
MetaVP |
Setting |
Params |
FLOPs |
FPS |
MSE |
MAE |
SSIM |
PSNR |
Download |
IncepU (SimVPv1) |
200 epoch |
58.0M |
19.4G |
209 |
32.15 |
89.05 |
0.9268 |
21.84 |
model | log |
gSTA (SimVPv2) |
200 epoch |
46.8M |
16.5G |
282 |
26.69 |
77.19 |
0.9402 |
22.78 |
model | log |
ViT |
200 epoch |
46.1M |
16.9G |
290 |
35.15 |
95.87 |
0.9139 |
21.67 |
model | log |
Swin Transformer |
200 epoch |
46.1M |
16.4G |
294 |
29.70 |
84.05 |
0.9331 |
22.22 |
model | log |
Uniformer |
200 epoch |
44.8M |
16.5G |
296 |
30.38 |
85.87 |
0.9308 |
22.13 |
model | log |
MLP-Mixer |
200 epoch |
38.2M |
14.7G |
334 |
29.52 |
83.36 |
0.9338 |
22.22 |
model | log |
ConvMixer |
200 epoch |
3.9M |
5.5G |
658 |
32.09 |
88.93 |
0.9259 |
21.93 |
model | log |
Poolformer |
200 epoch |
37.1M |
14.1G |
341 |
31.79 |
88.48 |
0.9271 |
22.03 |
model | log |
ConvNeXt |
200 epoch |
37.3M |
14.1G |
344 |
26.94 |
77.23 |
0.9397 |
22.74 |
model | log |
VAN |
200 epoch |
44.5M |
16.0G |
288 |
26.10 |
76.11 |
0.9417 |
22.89 |
model | log |
HorNet |
200 epoch |
45.7M |
16.3G |
287 |
29.64 |
83.26 |
0.9331 |
22.26 |
model | log |
MogaNet |
200 epoch |
46.8M |
16.5G |
255 |
25.57 |
75.19 |
0.9429 |
22.99 |
model | log |
TAU |
200 epoch |
44.7M |
16.0G |
283 |
24.60 |
71.93 |
0.9454 |
23.19 |
model | log |
IncepU (SimVPv1) |
2000 epoch |
58.0M |
19.4G |
209 |
21.15 |
64.15 |
0.9536 |
23.99 |
model | log |
gSTA (SimVPv2) |
2000 epoch |
46.8M |
16.5G |
282 |
15.05 |
49.80 |
0.9675 |
25.97 |
model | log |
ViT |
2000 epoch |
46.1M |
16.9.G |
290 |
19.74 |
61.65 |
0.9539 |
24.59 |
model | log |
Swin Transformer |
2000 epoch |
46.1M |
16.4G |
294 |
19.11 |
59.84 |
0.9584 |
24.53 |
model | log |
Uniformer |
2000 epoch |
44.8M |
16.5G |
296 |
18.01 |
57.52 |
0.9609 |
24.92 |
model | log |
MLP-Mixer |
2000 epoch |
38.2M |
14.7G |
334 |
18.85 |
59.86 |
0.9589 |
24.58 |
model | log |
ConvMixer |
2000 epoch |
3.9M |
5.5G |
658 |
22.30 |
67.37 |
0.9507 |
23.73 |
model | log |
Poolformer |
2000 epoch |
37.1M |
14.1G |
341 |
20.96 |
64.31 |
0.9539 |
24.15 |
model | log |
ConvNeXt |
2000 epoch |
37.3M |
14.1G |
344 |
17.58 |
55.76 |
0.9617 |
25.06 |
model | log |
VAN |
2000 epoch |
44.5M |
16.0G |
288 |
16.21 |
53.57 |
0.9646 |
25.49 |
model | log |
HorNet |
2000 epoch |
45.7M |
16.3G |
287 |
17.40 |
55.70 |
0.9624 |
25.14 |
model | log |
MogaNet |
2000 epoch |
46.8M |
16.5G |
255 |
15.67 |
51.84 |
0.9661 |
25.70 |
model | log |
TAU |
2000 epoch |
44.7M |
16.0G |
283 |
15.69 |
51.46 |
0.9661 |
25.71 |
model | log |