We provide temperature prediction benchmark results on the popular WeatherBench dataset (temperature prediction t2m
) using $12\rightarrow 12$ frames prediction setting. Metrics (MSE, MAE, SSIM, pSNR) of the best models are reported in three trials. Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. All methods are trained by Adam optimizer with Cosine Annealing scheduler (no warmup and min lr is 1e-6).
STL Benchmarks on Temperature (t2m)
Method |
Setting |
Params |
FLOPs |
FPS |
MSE |
MAE |
RMSE |
Download |
ConvLSTM |
50 epoch |
14.98M |
136G |
46 |
1.521 |
0.7949 |
1.233 |
model | log |
E3D-LSTM |
50 epoch |
51.09M |
169G |
35 |
1.592 |
0.8059 |
1.262 |
model | log |
PhyDNet |
50 epoch |
3.09M |
36.8G |
177 |
285.9 |
8.7370 |
16.91 |
model | log |
PredRNN |
50 epoch |
23.57M |
278G |
22 |
1.331 |
0.7246 |
1.154 |
model | log |
PredRNN++ |
50 epoch |
38.31M |
413G |
15 |
1.634 |
0.7883 |
1.278 |
model | log |
MIM |
50 epoch |
37.75M |
109G |
126 |
1.784 |
0.8716 |
1.336 |
model | log |
MAU |
50 epoch |
5.46M |
39.6G |
237 |
1.251 |
0.7036 |
1.119 |
model | log |
PredRNNv2 |
50 epoch |
23.59M |
279G |
22 |
1.545 |
0.7986 |
1.243 |
model | log |
IncepU (SimVPv1) |
50 epoch |
14.67M |
8.03G |
160 |
1.238 |
0.7037 |
1.113 |
model | log |
gSTA (SimVPv2) |
50 epoch |
12.76M |
7.01G |
504 |
1.105 |
0.6567 |
1.051 |
model | log |
ViT |
50 epoch |
12.41M |
7.99G |
432 |
1.146 |
0.6712 |
1.070 |
model | log |
Swin Transformer |
50 epoch |
12.42M |
6.88G |
581 |
1.143 |
0.6735 |
1.069 |
model | log |
Uniformer |
50 epoch |
12.02M |
7.45G |
465 |
1.204 |
0.6885 |
1.097 |
model | log |
MLP-Mixer |
50 epoch |
11.10M |
5.92G |
713 |
1.255 |
0.7011 |
1.119 |
model | log |
ConvMixer |
50 epoch |
1.13M |
0.95G |
1705 |
1.267 |
0.7073 |
1.126 |
model | log |
Poolformer |
50 epoch |
9.98M |
5.61G |
722 |
1.156 |
0.6715 |
1.075 |
model | log |
ConvNeXt |
50 epoch |
10.09M |
5.66G |
689 |
1.277 |
0.7220 |
1.130 |
model | log |
VAN |
50 epoch |
12.15M |
6.70G |
523 |
1.150 |
0.6803 |
1.072 |
model | log |
HorNet |
50 epoch |
12.42M |
6.84G |
517 |
1.201 |
0.6906 |
1.096 |
model | log |
MogaNet |
50 epoch |
12.76M |
7.01G |
416 |
1.152 |
0.6665 |
1.073 |
model | log |
TAU |
50 epoch |
12.22M |
6.70G |
511 |
1.162 |
0.6707 |
1.078 |
model | log |
STL Benchmarks on Temperature (r)
Method |
Setting |
Params |
FLOPs |
FPS |
MSE |
MAE |
RMSE |
Download |
ConvLSTM |
50 epoch |
14.98M |
136G |
46 |
35.146 |
4.012 |
5.928 |
model | log |
E3D-LSTM |
50 epoch |
51.09M |
169G |
35 |
36.534 |
4.100 |
6.044 |
model | log |
PhyDNet |
50 epoch |
3.09M |
36.8G |
177 |
239.00 |
8.975 |
15.46 |
model | log |
PredRNN |
50 epoch |
23.57M |
278G |
22 |
37.611 |
4.096 |
6.133 |
model | log |
PredRNN++ |
50 epoch |
38.31M |
413G |
15 |
35.146 |
4.012 |
5.928 |
model | log |
MIM |
50 epoch |
37.75M |
109G |
126 |
36.534 |
4.100 |
6.044 |
model | log |
MAU |
50 epoch |
5.46M |
39.6G |
237 |
34.529 |
4.004 |
5.876 |
model | log |
PredRNNv2 |
50 epoch |
23.59M |
279G |
22 |
36.508 |
4.087 |
6.042 |
model | log |
IncepU (SimVPv1) |
50 epoch |
14.67M |
8.03G |
160 |
34.355 |
3.994 |
5.861 |
model | log |
gSTA (SimVPv2) |
50 epoch |
12.76M |
7.01G |
504 |
31.426 |
3.765 |
5.606 |
model | log |
ViT |
50 epoch |
12.41M |
7.99G |
432 |
32.616 |
3.852 |
5.711 |
model | log |
Swin Transformer |
50 epoch |
12.42M |
6.88G |
581 |
31.332 |
3.776 |
5.597 |
model | log |
Uniformer |
50 epoch |
12.02M |
7.45G |
465 |
32.199 |
3.864 |
5.674 |
model | log |
MLP-Mixer |
50 epoch |
11.10M |
5.92G |
713 |
34.467 |
3.950 |
5.871 |
model | log |
ConvMixer |
50 epoch |
1.13M |
0.95G |
1705 |
32.829 |
3.909 |
5.730 |
model | log |
Poolformer |
50 epoch |
9.98M |
5.61G |
722 |
31.989 |
3.803 |
5.656 |
model | log |
ConvNeXt |
50 epoch |
10.09M |
5.66G |
689 |
33.179 |
3.928 |
5.760 |
model | log |
VAN |
50 epoch |
12.15M |
6.70G |
523 |
31.712 |
3.812 |
5.631 |
model | log |
HorNet |
50 epoch |
12.42M |
6.84G |
517 |
32.081 |
3.826 |
5.664 |
model | log |
MogaNet |
50 epoch |
12.76M |
7.01G |
416 |
31.795 |
3.816 |
5.639 |
model | log |
TAU |
50 epoch |
12.22M |
6.70G |
511 |
31.831 |
3.818 |
5.642 |
model | log |
STL Benchmarks on Temperature (uv10)
Method |
Setting |
Params |
FLOPs |
FPS |
MSE |
MAE |
RMSE |
Download |
ConvLSTM |
50 epoch |
14.98M |
136G |
43 |
1.8976 |
0.9215 |
1.3775 |
model | log |
E3D-LSTM |
50 epoch |
51.81M |
171G |
35 |
2.4111 |
1.0342 |
1.5528 |
model | log |
PhyDNet |
50 epoch |
3.09M |
36.8G |
172 |
16.798 |
2.9208 |
4.0986 |
model | log |
PredRNN |
50 epoch |
23.65M |
279G |
21 |
1.8810 |
0.9068 |
1.3715 |
model | log |
PredRNN++ |
50 epoch |
38.40M |
414G |
14 |
1.8727 |
0.9019 |
1.3685 |
model | log |
MIM |
50 epoch |
37.75M |
109G |
122 |
3.1399 |
1.1837 |
1.7720 |
model | log |
MAU |
50 epoch |
5.46M |
39.6G |
233 |
1.9001 |
0.9194 |
1.3784 |
model | log |
PredRNNv2 |
50 epoch |
23.68M |
280G |
21 |
2.0072 |
0.9413 |
1.4168 |
model | log |
IncepU (SimVPv1) |
50 epoch |
14.67M |
8.04G |
154 |
1.9993 |
0.9510 |
1.4140 |
model | log |
gSTA (SimVPv2) |
50 epoch |
12.76M |
7.02G |
498 |
1.5069 |
0.8142 |
1.2276 |
model | log |
ViT |
50 epoch |
12.42M |
8.0G |
427 |
1.6262 |
0.8438 |
1.2752 |
model | log |
Swin Transformer |
50 epoch |
12.42M |
6.89G |
577 |
1.4996 |
0.8145 |
1.2246 |
model | log |
Uniformer |
50 epoch |
12.03M |
7.46G |
459 |
1.4850 |
0.8085 |
1.2186 |
model | log |
MLP-Mixer |
50 epoch |
11.10M |
5.93G |
707 |
1.6066 |
0.8395 |
1.2675 |
model | log |
ConvMixer |
50 epoch |
1.14M |
0.96G |
1698 |
1.7067 |
0.8714 |
1.3064 |
model | log |
Poolformer |
50 epoch |
9.99M |
5.62G |
717 |
1.6123 |
0.8410 |
1.2698 |
model | log |
ConvNeXt |
50 epoch |
10.09M |
5.67G |
682 |
1.6914 |
0.8698 |
1.3006 |
model | log |
VAN |
50 epoch |
12.15M |
6.71G |
520 |
1.5958 |
0.8371 |
1.2632 |
model | log |
HorNet |
50 epoch |
12.42M |
6.85G |
513 |
1.5539 |
0.8254 |
1.2466 |
model | log |
MogaNet |
50 epoch |
12.76M |
7.01G |
411 |
1.6072 |
0.8451 |
1.2678 |
model | log |
TAU |
50 epoch |
12.22M |
6.70G |
505 |
1.5925 |
0.8426 |
1.2619 |
model | log |
STL Benchmarks on Temperature (tcc)
Method |
Setting |
Params |
FLOPs |
FPS |
MSE |
MAE |
RMSE |
Download |
ConvLSTM |
50 epoch |
14.98M |
136G |
46 |
0.04944 |
0.15419 |
0.22234 |
model | log |
E3D-LSTM |
50 epoch |
51.09M |
169G |
35 |
0.05729 |
0.15293 |
0.23936 |
model | log |
PhyDNet |
50 epoch |
3.09M |
36.8G |
172 |
0.09913 |
0.22614 |
0.31485 |
model | log |
PredRNN |
50 epoch |
23.57M |
278G |
22 |
0.05504 |
0.15877 |
0.23461 |
model | log |
PredRNN++ |
50 epoch |
38.31M |
413G |
15 |
0.05479 |
0.15435 |
0.23407 |
model | log |
MIM |
50 epoch |
37.75M |
109G |
126 |
0.05729 |
0.15293 |
0.23936 |
model | log |
MAU |
50 epoch |
5.46M |
39.6G |
237 |
0.04955 |
0.15158 |
0.22260 |
model | log |
PredRNNv2 |
50 epoch |
23.59M |
279G |
22 |
0.05051 |
0.15867 |
0.22475 |
model | log |
IncepU (SimVPv1) |
50 epoch |
14.67M |
8.03G |
160 |
0.04765 |
0.15029 |
0.21829 |
model | log |
gSTA (SimVPv2) |
50 epoch |
12.76M |
7.01G |
504 |
0.04657 |
0.14688 |
0.21580 |
model | log |
ViT |
50 epoch |
12.41M |
7.99G |
432 |
0.04778 |
0.15026 |
0.21859 |
model | log |
Swin Transformer |
50 epoch |
12.42M |
6.88G |
581 |
0.04639 |
0.14729 |
0.21539 |
model | log |
Uniformer |
50 epoch |
12.02M |
7.45G |
465 |
0.04680 |
0.14777 |
0.21634 |
model | log |
MLP-Mixer |
50 epoch |
11.10M |
5.92G |
713 |
0.04925 |
0.15264 |
0.22192 |
model | log |
ConvMixer |
50 epoch |
1.13M |
0.95G |
1705 |
0.04717 |
0.14874 |
0.21718 |
model | log |
Poolformer |
50 epoch |
9.98M |
5.61G |
722 |
0.04694 |
0.14884 |
0.21667 |
model | log |
ConvNeXt |
50 epoch |
10.09M |
5.66G |
689 |
0.04742 |
0.14867 |
0.21775 |
model | log |
VAN |
50 epoch |
12.15M |
6.70G |
523 |
0.04694 |
0.14725 |
0.21665 |
model | log |
HorNet |
50 epoch |
12.42M |
6.84G |
517 |
0.04692 |
0.14751 |
0.21661 |
model | log |
MogaNet |
50 epoch |
12.76M |
7.01G |
416 |
0.04699 |
0.14802 |
0.21676 |
model | log |
TAU |
50 epoch |
12.22M |
6.70G |
511 |
0.04723 |
0.14604 |
0.21733 |
model | log |