-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathpredict.py
129 lines (110 loc) · 4.68 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
import time
import shutil
import traceback
import yaml
import logging
import math
import sys
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
from program import build_config, build_model, build_optimizer, \
build_pretrained_weights, build_device
from character import CTCLabelConverter, AttnLabelConverter
class Recoginizer(object):
def __init__(self):
self.config = build_config()
model = build_model(self.config)
device, gpu_count = build_device(self.config)
optimizer = build_optimizer(self.config, model)
model, optimizer, global_state = build_pretrained_weights(self.config, model, optimizer)
self.device = device
if self.config.Global.loss_type == 'ctc':
self.converter = CTCLabelConverter(self.config)
else:
self.converter = AttnLabelConverter(self.config)
self.model = model.to(self.device)
self.keep_ratio_with_pad = self.config.TrainReader.padding
self.channel = self.config.Global.image_shape[0]
self.imgH = self.config.Global.image_shape[1]
self.imgW = self.config.Global.image_shape[2]
self.num_steps = self.config.Global.batch_max_length + 1
def preprocess(self, image):
self.transform = transforms.ToTensor()
if self.keep_ratio_with_pad:
w, h = image.size
ratio = w / float(h)
if math.ceil(ratio * self.imgH) > self.imgW:
resized_image = image.resize((self.imgW, self.imgH), Image.BICUBIC)
resized_image = self.transform(resized_image)
imgP = resized_image.sub(0.5).div(0.5)
else:
resized_W = math.ceil(ratio * self.imgH)
resized_image = image.resize((resized_W, self.imgH), Image.BICUBIC)
resized_image = self.transform(resized_image)
resized_image = resized_image.sub(0.5).div(0.5)
c, h, w = resized_image.size()
imgP = torch.FloatTensor(*(self.channel, self.imgH, self.imgW)).fill_(0)
imgP[:, :, :w] = resized_image
imgP[:, :, w:] = resized_image[:, :, w - 1].unsqueeze(2).expand(c, h, self.imgW - w)
else:
resized_image = image.resize((self.imgW, self.imgH), Image.BICUBIC)
resized_image = self.transform(resized_image)
imgP = resized_image.sub(0.5).div(0.5)
imgP = imgP.unsqueeze(0)
return imgP
def predict(self, image_tensor):
self.model.eval()
with torch.no_grad():
image_tensor = image_tensor.to(self.device)
if self.config.Global.loss_type == 'ctc':
outputs = self.model(image_tensor)
else:
pseudo_text = None
outputs = self.model(image_tensor, pseudo_text)
outputs = outputs.softmax(dim=2).detach().cpu().numpy()
preds_str = self.converter.decode(outputs)
return preds_str
def __call__(self, image):
image_tensor = self.preprocess(image)
preds_str = self.predict(image_tensor)[0][0]
return preds_str
if __name__ == "__main__":
config = build_config()
text_recognizer = Recoginizer()
img_path = config.Global.infer_img
start_time = time.time()
if os.path.isdir(img_path):
for file in os.listdir(img_path):
if file.endswith('jpg') or file.endswith('jpeg') \
or file.endswith('png'):
print(f'当前处理的图片是: {file}')
img_file_path = os.path.join(img_path, file)
image = Image.open(img_file_path)
if config.Global.image_shape[0] == 1:
image = image.convert('L')
else:
image = image.convert('RGB')
preds_str = text_recognizer(image)
print(f'识别结果是: {preds_str}')
end_time = time.time()
print(f'一共耗时为: {end_time - start_time}')
elif os.path.isfile(img_path):
file = os.path.basename(img_path)
if file.endswith('jpg') or file.endswith('jpeg') \
or file.endswith('png'):
print(f'当前处理的图片是: {file}')
image = Image.open(img_path)
if config.Global.image_shape[0] == 1:
image = image.convert('L')
else:
image = image.convert('RGB')
preds_str = text_recognizer(image)
print(f'识别结果是: {preds_str}')