-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtrain.py
62 lines (47 loc) · 1.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import os
import random
import time
import shutil
import traceback
import yaml
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
import logging
from program import build_model, build_config, build_data_loader, build_device, build_optimizer, build_loss, build_trainer, build_pretrained_weights
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
def main():
flags = build_config()
model = build_model(flags)
optimizer = build_optimizer(flags, model)
model, optimizer, global_state = build_pretrained_weights(flags, model, optimizer)
train_loader = build_data_loader(flags, mode='train')
val_loader = build_data_loader(flags, mode='validation')
device, gpu_count = build_device(flags)
if gpu_count > 1:
model = nn.DataParallel(model)
loss = build_loss(flags)
trainer = build_trainer(
device=device,
model=model,
optimizer=optimizer,
loss=loss,
val_loader=val_loader,
train_loader=train_loader,
flags=flags,
global_state=global_state
)
trainer.train()
if __name__ == '__main__':
main()