-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathutils.py
182 lines (161 loc) · 5.83 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import logging
import importlib
import sys
import torch
import torch.nn as nn
import torch.nn.init as init
import Levenshtein
def load_checkpoint(_model, pretrained_weights, to_use_device, _optimizer=None):
global_state = {}
state = torch.load(pretrained_weights, map_location=to_use_device)
state_ori = state['state_dict']
state_after = {}
for key, value in state_ori.items():
key = key[7:]
state_after[key] = value
_model.load_state_dict(state_after)
if _optimizer is not None:
_optimizer.load_state_dict(state['optimizer'])
for state in _optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.to(to_use_device)
if 'global_state' in state:
global_state = state['global_state']
return _model, _optimizer, global_state
def save_checkpoint(checkpoint_path, model, optimizer, **kwargs):
state = {
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}
state.update(kwargs)
torch.save(state, checkpoint_path)
def initial_logger(log_file_path):
"""
ARGS
log_file_path: string, path to the logging file
"""
# logging settings
log_formatter = logging.Formatter("%(asctime)s [%(levelname)-5.5s] %(message)s")
root_logger = logging.getLogger()
root_logger.setLevel(logging.DEBUG)
# file handler
log_file_handler = logging.FileHandler(log_file_path)
log_file_handler.setFormatter(log_formatter)
root_logger.addHandler(log_file_handler)
# stream handler (stdout)
log_stream_handler = logging.StreamHandler(sys.stdout)
log_stream_handler.setFormatter(log_formatter)
root_logger.addHandler(log_stream_handler)
logging.info('Logging file is %s' % log_file_path)
def create_module(module_str):
tmpss = module_str.split(",")
assert len(tmpss) == 2, "Error formate\
of the module path: {}".format(module_str)
module_name, function_name = tmpss[0], tmpss[1]
somemodule = importlib.import_module(module_name, __package__)
function = getattr(somemodule, function_name)
return function
class RecMetric:
def __init__(self, converter):
"""
文本识别相关指标计算类
:param converter: 用于label转换的转换器
"""
self.converter = converter
def __call__(self, predictions, labels):
n_correct = 0
norm_edit_dis = 0.0
predictions = predictions.softmax(dim=2).detach().cpu().numpy()
preds_str = self.converter.decode(predictions)
show_str = []
for (pred, pred_conf), target in zip(preds_str, labels):
if max(len(pred), len(target)) == 0:
continue
else:
norm_edit_dis += Levenshtein.distance(pred, target) / max(len(pred), len(target))
show_str.append(f'{pred} -> {target}')
if pred == target:
n_correct += 1
return {'n_correct': n_correct, 'norm_edit_dis': norm_edit_dis, 'show_str': show_str}
def weight_init(m):
"""
Usage:
model = Model()
model.apply(weight_init)
"""
if isinstance(m, nn.Conv1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.BatchNorm1d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm2d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm3d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.Linear):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.LSTM):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.LSTMCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.GRU):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.GRUCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
def get_characters(dict_path):
character_str = ''
with open(dict_path, 'rb') as f:
lines = f.readlines()
for i in lines:
tmp_char = i.decode('utf-8').strip('\n').strip('\r\n')
character_str += tmp_char
character_str += " "
return character_str