-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathindex4.html
451 lines (403 loc) · 28.2 KB
/
index4.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<!DOCTYPE html>
<html lang="cn">
<head>
<meta charset="utf-8" />
<title>python自动化测试人工智能</title>
<link rel="stylesheet" href="/theme/css/main.css" />
</head>
<body id="index" class="home">
<header id="banner" class="body">
<h1><a href="/">python自动化测试人工智能 </a></h1>
<nav><ul>
<li><a href="/category/ba-zi.html">八字</a></li>
<li><a href="/category/ce-shi.html">测试</a></li>
<li><a href="/category/ce-shi-kuang-jia.html">测试框架</a></li>
<li><a href="/category/common.html">common</a></li>
<li><a href="/category/da-shu-ju.html">大数据</a></li>
<li><a href="/category/feng-shui.html">风水</a></li>
<li><a href="/category/ji-qi-xue-xi.html">机器学习</a></li>
<li><a href="/category/jie-meng.html">解梦</a></li>
<li><a href="/category/linux.html">linux</a></li>
<li><a href="/category/python.html">python</a></li>
<li><a href="/category/shu-ji.html">书籍</a></li>
<li><a href="/category/shu-ju-fen-xi.html">数据分析</a></li>
<li><a href="/category/zhong-cao-yao.html">中草药</a></li>
<li><a href="/category/zhong-yi.html">中医</a></li>
</ul></nav>
</header><!-- /#banner -->
<section id="content" class="body">
<ol id="posts-list" class="hfeed" start="9">
<li><article class="hentry">
<header>
<h1><a href="/python_vision_deep3.html" rel="bookmark"
title="Permalink to python计算机视觉深度学习3图像分类基础">python计算机视觉深度学习3图像分类基础</a></h1>
</header>
<div class="entry-content">
<footer class="post-info">
<abbr class="published" title="2018-12-25T07:35:00+08:00">
Published: 二 25 十二月 2018
</abbr>
<address class="vcard author">
By <a class="url fn" href="/author/andrew.html">andrew</a>
</address>
<p>In <a href="/category/python.html">python</a>.</p>
</footer><!-- /.post-info --> <p><a href="https://china-testing.github.io/python_vision_deep.html">本文教程目录</a></p>
<h3 id="_1">什么是图像分类?</h3>
<p>图像分类的核心任务是从预定义的一类图像中为图像分配标签。分析输入图像并返回标签对图像进行分类。标签始终来自一组预定义的可能类别。</p>
<p>比如预定义的标签为:</p>
<div class="highlight"><pre><span></span><span class="n">categories</span> <span class="o">=</span> <span class="p">{</span><span class="n">cat</span><span class="p">,</span> <span class="n">dog</span><span class="p">,</span> <span class="n">panda</span><span class="p">}</span>
</pre></div>
<p><img alt="image.png" src="https://upload-images.jianshu.io/upload_images/10819934-f3241e2af4aeb025.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<p>分类系统还可以通过概率为图像分配多个标签。比如狗:95%;猫:4%;熊猫:1%。更重要的是,W×H像素输入图像有三个通道,Red,Green和Blue,分析W×H×3 = N像素图像,并弄清楚如何正确分类图像的内容。</p>
<p><img alt="image.png" src="https://upload-images.jianshu.io/upload_images/10819934-54931b9b725c4a23.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<p>在图像分类中,我们的数据集是图像的集合。因此,每个图像都是数据点。</p>
<p><img alt="image.png" src="https://upload-images.jianshu.io/upload_images/10819934-4d820c1ca4b36890.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<p>左边猫,右边狗,电脑看到的是像素矩阵。实际上,计算机并不知道图像中有动物。</p>
<p><img alt="image.png" src="https://upload-images.jianshu.io/upload_images/10819934-a6ae0fd8aadc7d84.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<p>上图可描述如下:
•空间:天空位于图像的顶部,沙/海洋位于底部。
•颜色:天空是深蓝色,海水浅蓝色,而沙子则是
棕褐色。
•纹理:天空具有相对均匀的图案,而沙子非常粗糙。</p>
<p>需要应用特征提取来量化图像的内容 …</p>
<a class="readmore" href="/python_vision_deep3.html">read more</a>
</div><!-- /.entry-content -->
</article></li>
<li><article class="hentry">
<header>
<h1><a href="/python_vision_deep2.html" rel="bookmark"
title="Permalink to python计算机视觉深度学习工具2图像基础">python计算机视觉深度学习工具2图像基础</a></h1>
</header>
<div class="entry-content">
<footer class="post-info">
<abbr class="published" title="2018-12-24T21:35:00+08:00">
Published: 一 24 十二月 2018
</abbr>
<address class="vcard author">
By <a class="url fn" href="/author/andrew.html">andrew</a>
</address>
<p>In <a href="/category/python.html">python</a>.</p>
</footer><!-- /.post-info --> <p><a href="https://china-testing.github.io/python_vision_deep.html">本文教程目录</a></p>
<p>构建自己的图像分类器之前需要了解图像是什么。</p>
<h3 id="_1">像素:图像的元素</h3>
<p>像素是图像的基本元素。每个图像都由一组像素组成。没有比像素更细的粒度。</p>
<p>通常像素是光的“颜色”或“强度”。</p>
<p>下图的分辨率为1,000×750,这意味着它是1,000像素宽750像素高。我们可以将图像概念化为(多维)矩阵。图片中总共有1,000×750 = 750,000像素。</p>
<p><img alt="image.png" src="https://upload-images.jianshu.io/upload_images/10819934-03baa175f901e0bd.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<p>大多数像素以两种方式表示:
1.灰度/单通道
2.颜色</p>
<p>在灰度图像中,每个像素是0到255之间的标量值,其中零对应为“黑色”,255为“白色”。
<img alt="image.png" src="https://upload-images.jianshu.io/upload_images/10819934-def6b6370b523d5d.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<p>彩色像素通常在RGB颜色空间中表示(其他颜色空间通常要转成RGB)。</p>
<p><img alt="image.png" src="https://upload-images.jianshu.io/upload_images/10819934-588ed03546979273.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<p>黑色:(0, 0, 0)
红色:(255, 0, 0)</p>
<p>RGB色彩空间的主要缺点包括:
•不使用“颜色选择器”工具时表示颜色不直观 …</p>
<a class="readmore" href="/python_vision_deep2.html">read more</a>
</div><!-- /.entry-content -->
</article></li>
<li><article class="hentry">
<header>
<h1><a href="/python_vision_deep1.html" rel="bookmark"
title="Permalink to python计算机视觉深度学习1简介">python计算机视觉深度学习1简介</a></h1>
</header>
<div class="entry-content">
<footer class="post-info">
<abbr class="published" title="2018-12-24T08:35:00+08:00">
Published: 一 24 十二月 2018
</abbr>
<address class="vcard author">
By <a class="url fn" href="/author/andrew.html">andrew</a>
</address>
<p>In <a href="/category/python.html">python</a>.</p>
</footer><!-- /.post-info --> <ul>
<li>
<p><a href="https://china-testing.github.io/python_vision_deep.html">本文教程目录</a></p>
</li>
<li>
<p><a href="https://china-testing.github.io/practices.html">python测试开发项目实战-目录</a></p>
</li>
<li><a href="https://china-testing.github.io/python_books.html">python工具书籍下载-持续更新</a></li>
<li><a href="https://china-testing.github.io/python3_quick.html">python 3.7极速入门教程 - 目录</a></li>
</ul>
<h3 id="_1">神经网络和深度学习简史</h3>
<p>人工神经网络(ANN Artificial Neural Network)是一类学习的机器学习算法,它专注于模式识别,对数据进行学习,灵感来自大脑的结构和功能深度学习属于ANN算法的家族,在大多数情况下,两者可以互换使用。</p>
<p>事实上,你可能会惊讶地发现深度学习领域已经存在了60多年。自20世纪40年代以来,“深度学习”一直存在着各种各样的名字
变化,包括控制论,连接主义和最熟悉的人工神经网络。</p>
<p><img alt="image.png" src="https://upload-images.jianshu.io/upload_images/10819934-2696e8df787598dc.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<p>第一个神经网络模型来自McCulloch和Pitts,1943年。这个网络是一个二元分类器,能够根据一些输入识别两个不同的类别。</p>
<p>然后,在20世纪50年代,开创性的Perceptron算法由Rosenblatt发表 - 这个模型可以自动学习输入分类所需的权重(无人为干预需要)。这个自动训练程序构成了随机梯度下降(SGD Stochastic Gradient Descent)的基础,今天仍用于训练非常深的神经网络。</p>
<p><img alt="image.png" src="https://upload-images.jianshu.io/upload_images/10819934-267a55cb8f5b94d4.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<p>在此期间,基于感知器的技术在神经网络社区中风靡一时。然而,Minsky和Papert 在1969年出版的一本书有效地停滞了神经
网络研究近十年。他们的工作证明了具有线性的感知器激活函数 …</p>
<a class="readmore" href="/python_vision_deep1.html">read more</a>
</div><!-- /.entry-content -->
</article></li>
<li><article class="hentry">
<header>
<h1><a href="/python_vision_deep.html" rel="bookmark"
title="Permalink to python计算机视觉深度学习">python计算机视觉深度学习</a></h1>
</header>
<div class="entry-content">
<footer class="post-info">
<abbr class="published" title="2018-12-24T08:25:00+08:00">
Published: 一 24 十二月 2018
</abbr>
<address class="vcard author">
By <a class="url fn" href="/author/andrew.html">andrew</a>
</address>
<p>In <a href="/category/python.html">python</a>.</p>
</footer><!-- /.post-info --> <ul>
<li>
<p><a href="https://china-testing.github.io/python_vision_deep.html">本文教程目录</a></p>
</li>
<li>
<p><a href="https://china-testing.github.io/practices.html">python测试开发项目实战-目录</a></p>
</li>
<li><a href="https://china-testing.github.io/python_books.html">python工具书籍下载-持续更新</a></li>
<li>
<p><a href="https://china-testing.github.io/python3_quick.html">python计算机视觉深度学习3图像分类基础</a></p>
</li>
<li>
<p><a href="https://china-testing.github.io/python_vision_deep1.html">python计算机视觉深度学习1简介</a></p>
</li>
<li>
<p><a href="https://china-testing.github.io/python_vision_deep2.html">python计算机视觉深度学习工具2图像基础</a></p>
</li>
<li>
<p><a href="https://china-testing.github.io/python_vision_deep3.html">python计算机视觉深度学习工具2图像基础</a></p>
</li>
</ul>
<h3 id="_1">参考资料</h3>
<ul>
<li>讨论 qq群144081101 567351477</li>
<li><a href="https://china-testing.github.io/python3_quick4.html">本文最新版本地址</a></li>
<li><a href="https://github.com/china-testing/python-api-tesing">本文涉及的python测试开发库</a> 谢谢点赞!</li>
<li><a href="https://github.com/china-testing/python-api-tesing/blob/master/books.md">本文相关海量书籍下载</a> </li>
<li>道家技术-手相手诊看相中医等钉钉群21734177 qq群:391441566 184175668 338228106 看手相、面相、舌相、抽签、体质识别。服务费50元每人次起。请联系钉钉或者微信pythontesting</li>
<li><a href="https://china-testing.github.io/testing_training.html">接口自动化性能测试线上培训大纲</a></li>
<li><a href="https://www.fullstackpython.com/monitoring.html">Monitoring</a></li>
</ul>
<a class="readmore" href="/python_vision_deep.html">read more</a>
</div><!-- /.entry-content -->
</article></li>
<li><article class="hentry">
<header>
<h1><a href="/pandas_tips.html" rel="bookmark"
title="Permalink to pandas试题与技巧">pandas试题与技巧</a></h1>
</header>
<div class="entry-content">
<footer class="post-info">
<abbr class="published" title="2018-12-20T07:20:00+08:00">
Published: 四 20 十二月 2018
</abbr>
<address class="vcard author">
By <a class="url fn" href="/author/andrew.html">andrew</a>
</address>
<p>In <a href="/category/python.html">python</a>.</p>
</footer><!-- /.post-info --> <ul>
<li><a href="https://china-testing.github.io/practices.html">python测试开发项目实战-目录</a></li>
<li><a href="https://china-testing.github.io/python_books.html">python工具书籍下载-持续更新</a></li>
<li><a href="https://china-testing.github.io/python3_quick.html">python 3.7极速入门教程 - 目录</a></li>
</ul>
<h3 id="_1">删除包含某个值的行</h3>
<p>现有df = pd.DataFrame([[1,0,2],[1,2,3],[0,1,2],[4,5,6]]),请删除其中包含0的行。</p>
<p>参考答案:</p>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="kn">import</span> <span class="nn">pandas</span> <span class="kn">as</span> <span class="nn">pd</span>
<span class="o">>>></span> <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">],[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">],[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">],[</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">]])</span>
<span class="o">>>></span> <span class="n">df</span>
<span class="mi">0</span> <span class="mi">1</span> <span class="mi">2</span>
<span class="mi">0</span> <span class="mi">1</span> <span class="mi">0 …</span></pre></div>
<a class="readmore" href="/pandas_tips.html">read more</a>
</div><!-- /.entry-content -->
</article></li>
<li><article class="hentry">
<header>
<h1><a href="/nltk1.html" rel="bookmark"
title="Permalink to Python自然语言工具库NLTK快速入门教程1简介">Python自然语言工具库NLTK快速入门教程1简介</a></h1>
</header>
<div class="entry-content">
<footer class="post-info">
<abbr class="published" title="2018-12-19T18:25:00+08:00">
Published: 三 19 十二月 2018
</abbr>
<address class="vcard author">
By <a class="url fn" href="/author/andrew.html">andrew</a>
</address>
<p>In <a href="/category/python.html">python</a>.</p>
</footer><!-- /.post-info --> <ul>
<li><a href="https://china-testing.github.io/practices.html">python测试开发项目实战-目录</a></li>
<li><a href="https://china-testing.github.io/python_books.html">python工具书籍下载-持续更新</a></li>
<li><a href="https://china-testing.github.io/python3_quick.html">python 3.7极速入门教程 - 目录</a></li>
</ul>
<h3 id="_1">什么是自然语言处理?</h3>
<p>自然语言处理是指通过软件或机器理解并操作文本或语音。 人类互动,了解彼此的观点,并用适当的答案作出回应。 在NLP中,这种交互,理解,响应是由计算机而不是人类完成的。</p>
<h3 id="nltk">什么是NLTK?</h3>
<p>NLTK代表Natural Language Toolkit。它包使计算机理解人类语言并使用适当的响应回复它。 本教程中将讨论标记,粉刺,词形还原,标点,字符计数,字数统计等。</p>
<h3 id="_2">自然语言库介绍</h3>
<ul>
<li>NLTK 最有用,且是是所有NLP库中的鼻祖。</li>
<li>spaCy 这是完全优化和高度准确的库,广泛用于深度学习</li>
<li>Stanford CoreNLP Python 基于C-S的体系结构,用JAVA编写的,但它提供了在Python API</li>
<li>TextBlob 处理文本数据,主要以API的形式提供所有类型的操作。</li>
<li>Gensim 强大、非常高效且可扩展。</li>
<li>Pattern 个轻量级NLP模块。 这通常用于Web挖掘,爬虫 …</li></ul>
<a class="readmore" href="/nltk1.html">read more</a>
</div><!-- /.entry-content -->
</article></li>
<li><article class="hentry">
<header>
<h1><a href="/pandas1.0.html" rel="bookmark"
title="Permalink to 最流行的开源数据分析,处理和可视化工具pandas的未来">最流行的开源数据分析,处理和可视化工具pandas的未来</a></h1>
</header>
<div class="entry-content">
<footer class="post-info">
<abbr class="published" title="2018-12-18T09:20:00+08:00">
Published: 二 18 十二月 2018
</abbr>
<address class="vcard author">
By <a class="url fn" href="/author/andrew.html">andrew</a>
</address>
<p>In <a href="/category/python.html">python</a>.</p>
</footer><!-- /.post-info --> <ul>
<li><a href="https://china-testing.github.io/practices.html">python测试开发项目实战-目录</a></li>
<li><a href="https://china-testing.github.io/python_books.html">python工具书籍下载-持续更新</a></li>
<li><a href="https://china-testing.github.io/python3_quick.html">python 3.7极速入门教程 - 目录</a></li>
</ul>
<p>pandas是一个功能强大的开源Python库,用于数据分析,处理和可视化,当前版本:0.23.4。用户在1000万左右,并成为Python数据科学工具包中的“必须使用”的工具。</p>
<p>许多数据科学家都向我提出过这样的问题:</p>
<p>pandas 可靠吗?</p>
<p>以后还会维护么?</p>
<p>为什么没有发布1.0版本!</p>
<p>版本号可用于表示产品的成熟度。但在开源世界中,版本号并不一定能告诉关于库的成熟度或可靠性的信息。 实际上 pandas既成熟又可靠!不过版本号传达了API的稳定性。</p>
<ul>
<li><a href="https://china-testing.github.io/practices.html">python测试开发项目实战-目录</a></li>
<li><a href="https://china-testing.github.io/python_books.html">python工具书籍下载-持续更新</a></li>
<li><a href="https://china-testing.github.io/python3_quick.html">python 3.7极速入门教程 - 目录</a></li>
</ul>
<h3 id="pandas-10">走向pandas 1.0</h3>
<ul>
<li>推荐使用方法链</li>
</ul>
<p>不使用方法链的例子:</p>
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">pandas</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">pandas</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">'data/titanic.csv.gz …</span></pre></div>
<a class="readmore" href="/pandas1.0.html">read more</a>
</div><!-- /.entry-content -->
</article></li>
<li><article class="hentry">
<header>
<h1><a href="/nlp_books.html" rel="bookmark"
title="Permalink to 2019 最佳自然语言工具书籍下载">2019 最佳自然语言工具书籍下载</a></h1>
</header>
<div class="entry-content">
<footer class="post-info">
<abbr class="published" title="2018-12-17T08:20:00+08:00">
Published: 一 17 十二月 2018
</abbr>
<address class="vcard author">
By <a class="url fn" href="/author/andrew.html">andrew</a>
</address>
<p>In <a href="/category/python.html">python</a>.</p>
</footer><!-- /.post-info --> <h3 id="natural-language-processing-with-tensorflow-2018pdf"><a href="https://itbooks.pipipan.com/fs/18113597-325450926">Natural Language Processing with TensorFlow - 2018.pdf</a></h3>
<p><img alt="图片.png" src="https://upload-images.jianshu.io/upload_images/12713060-091e808154321809.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<p>https://github.com/PacktPublishing/Natural-Language-Processing-with-TensorFlow</p>
<h3 id="mastering-natural-language-processing-with-python-2016pdf"><a href="https://itbooks.pipipan.com/fs/18113597-325450863">Mastering Natural Language Processing with Python - 2016.pdf</a></h3>
<p><img alt="图片.png" src="https://upload-images.jianshu.io/upload_images/12713060-13d2970a2d60dc60.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<p><a href="https://itbooks.pipipan.com/fs/18113597-325460790">精通Python自然语言处理.pdf</a></p>
<h3 id="speech-and-language-processing-3rd-edition-in-making-dan-jurafsky-james-h-martin">斯坦福权威教程 <a href="https://web.stanford.edu/~jurafsky/slp3/">Speech and Language Processing</a> (3rd edition in making) - Dan Jurafsky, James H. Martin 可在线下载</h3>
<p><img alt="图片.png" src="https://upload-images.jianshu.io/upload_images/12713060-c21fc2c5978a2a72.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"> </p>
<p>适合人群:初级到中级学者</p>
<p>推荐指数:★★★★★</p>
<p>主要内容:本书内容涵盖了自然语言处理的方方面面,从底层的词法分词、语法分析和语义分析,到和应用更为接近的自然语言处理任务,如信息抽取、机器翻译、自动问答、文本摘要、对话系统等 …</p>
<a class="readmore" href="/nlp_books.html">read more</a>
</div><!-- /.entry-content -->
</article></li>
<li><article class="hentry">
<header>
<h1><a href="/python3_lib_boom.html" rel="bookmark"
title="Permalink to python标准模块介绍-性能测试工具boom">python标准模块介绍-性能测试工具boom</a></h1>
</header>
<div class="entry-content">
<footer class="post-info">
<abbr class="published" title="2018-12-10T07:20:00+08:00">
Published: 一 10 十二月 2018
</abbr>
<address class="vcard author">
By <a class="url fn" href="/author/andrew.html">andrew</a>
</address>
<p>In <a href="/category/python.html">python</a>.</p>
</footer><!-- /.post-info --> <h3 id="boom">boom简介</h3>
<p>boom是python替代ab的模块,并增加了部分功能。</p>
<h4 id="boom_1">boom安装</h4>
<p>ubuntu 执行“pip install boom“即可,注意可能需要先执行"apt-get install libevent python-dev"。它使用Gevent创建虚拟用户,使用Requests发送请求。</p>
<h4 id="boom_2">boom快速入门</h4>
<div class="highlight"><pre><span></span><span class="c1"># boom -n1000 -c10 http://localhost</span>
/usr/local/anaconda3/lib/python3.6/site-packages/boom/boom.py:28: MonkeyPatchWarning: Monkey-patching ssl after ssl has already been imported may lead to errors, including RecursionError on …</pre></div>
<a class="readmore" href="/python3_lib_boom.html">read more</a>
</div><!-- /.entry-content -->
</article></li>
<li><article class="hentry">
<header>
<h1><a href="/merge_excel_rows2.html" rel="bookmark"
title="Permalink to python数据分析工具pandas作业:把多行合并成一行">python数据分析工具pandas作业:把多行合并成一行</a></h1>
</header>
<div class="entry-content">
<footer class="post-info">
<abbr class="published" title="2018-12-06T08:55:00+08:00">
Published: 四 06 十二月 2018
</abbr>
<address class="vcard author">
By <a class="url fn" href="/author/andrew.html">andrew</a>
</address>
<p>In <a href="/category/python.html">python</a>.</p>
</footer><!-- /.post-info --> <ul>
<li><a href="https://china-testing.github.io/practices.html">python测试开发项目实战-目录</a></li>
<li><a href="https://china-testing.github.io/python_books.html">python工具书籍下载-持续更新</a></li>
<li><a href="https://china-testing.github.io/python3_quick.html">python 3.7极速入门教程 - 目录</a></li>
</ul>
<h3 id="pythonpandasexcel">python数据分析工具pandas作业:合并excel重复行</h3>
<p>数据示例:</p>
<p><img alt="图片.png" src="https://upload-images.jianshu.io/upload_images/12713060-e61ea4bc9abc5a1c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<p>转换成:</p>
<p><img alt="图片.png" src="https://upload-images.jianshu.io/upload_images/12713060-012737f08825f15d.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240"></p>
<h3 id="_1">代码</h3>
<div class="highlight"><pre><span></span><span class="ch">#!/usr/bin/python3</span>
<span class="c1"># -*- coding: utf-8 -*-</span>
<span class="c1"># 技术支持:https://www.jianshu.com/u/69f40328d4f0 </span>
<span class="c1"># 技术支持 https://china-testing.github.io/merge_excel_rows.html</span>
<span class="c1"># https://github.com/china-testing/python-api-tesing/blob/master/practices/pandas/merge_excel_rows2.py</span>
<span class="c1"># 项目实战讨论QQ群630011153 144081101</span>
<span class="c1"># CreateDate: 2018-12-06</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="kn">as</span> <span class="nn">pd</span>
<span class="n">df …</span></pre></div>
<a class="readmore" href="/merge_excel_rows2.html">read more</a>
</div><!-- /.entry-content -->
</article></li>
</ol><!-- /#posts-list -->
<p class="paginator">
<a href="/index3.html">«</a>
Page 4 / 21
<a href="/index5.html">»</a>
</p>
</section><!-- /#content -->
<section id="extras" class="body">
<div class="blogroll">
<h2>links</h2>
<ul>
<li><a href="https://china-testing.github.io/testing_training.html">自动化性能接口测试线上及深圳培训与项目实战 qq群:144081101 591302926</a></li>
<li><a href="http://blog.sciencenet.cn/blog-2604609-1112306.html">pandas数据分析scrapy爬虫 521070358 Py人工智能pandas-opencv 6089740</a></li>
<li><a href="http://blog.sciencenet.cn/blog-2604609-1112306.html">中医解梦看相八字算命qq群 391441566 csdn书籍下载-python爬虫 437355848</a></li>
</ul>
</div><!-- /.blogroll -->
</section><!-- /#extras -->
<footer id="contentinfo" class="body">
<address id="about" class="vcard body">
Proudly powered by <a href="http://getpelican.com/">Pelican</a>, which takes great advantage of <a href="http://python.org">Python</a>.
</address><!-- /#about -->
<p>The theme is by <a href="http://coding.smashingmagazine.com/2009/08/04/designing-a-html-5-layout-from-scratch/">Smashing Magazine</a>, thanks!</p>
</footer><!-- /#contentinfo -->
</body>
</html>