-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCrypto.py
186 lines (152 loc) · 6.11 KB
/
Crypto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import base64
from cryptography.hazmat.primitives.asymmetric import rsa, ec
from cryptography.hazmat.primitives import serialization, hashes
from cryptography.hazmat.primitives.kdf.x963kdf import X963KDF
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import padding as asymmetric_padding
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.exceptions import InvalidSignature
def generate_rsa_key_pair(public_exponent=65537, key_size=1024):
rsa_private_key = rsa.generate_private_key(
public_exponent=public_exponent,
key_size=key_size,
backend=default_backend()
)
rsa_public_key = rsa_private_key.public_key()
return rsa_private_key, rsa_public_key
# sign the plain text with private key, and return the signature
def sign(private_key, plain_text):
signer = private_key.signer(
asymmetric_padding.PSS(
mgf=asymmetric_padding.MGF1(hashes.SHA256()),
salt_length=asymmetric_padding.PSS.MAX_LENGTH
),
hashes.SHA256()
)
signer.update(plain_text)
signature = signer.finalize()
return base64.b64encode(signature)
# use AES and CTR mode to symmetrically encrypt the plain text, and return the encryption result
def symmetric_encrypt(key, iv, ori_text):
cipher = Cipher(algorithms.AES(base64.b64decode(key)), modes.CTR(base64.b64decode(iv)), backend=default_backend())
encryptor = cipher.encryptor()
cipher_text = encryptor.update(ori_text) + encryptor.finalize()
return base64.b64encode(cipher_text)
# use AES and CTR mode to symmetrically decrypt the encrypted text, and return the decryption result
def symmetric_decrypt(key, iv, encrypted_text):
cipher = Cipher(algorithms.AES(base64.b64decode(key)), modes.CTR(base64.b64decode(iv)), backend=default_backend())
decryptor = cipher.decryptor()
plain_text = decryptor.update(base64.b64decode(encrypted_text)) + decryptor.finalize()
return plain_text
# asymmetrically encrypt the given message with rsa
def asymmetric_encrypt(public_key, message):
key_size = public_key.key_size
seg_size = key_size / 8 - 42
cipher_text = ''
msg_size = len(message)
start = 0
while start < msg_size:
seg_msg = message[start: min(start + seg_size, msg_size)]
seg_cipher_text = public_key.encrypt(
seg_msg,
asymmetric_padding.OAEP(
mgf=asymmetric_padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA1(),
label=None))
cipher_text += base64.b64encode(seg_cipher_text)
start += seg_size
return cipher_text
# asymmetrically decrypt the given message with rsa
def asymmetric_decrypt(private_key, encrypted_msg):
key_size = private_key.key_size
encrypted_seg_size = (key_size / 8 - 42) * 2
plain_text = ''
encrypted_msg_size = len(encrypted_msg)
start = 0
try:
while start < encrypted_msg_size:
seg_encrypted_msg = encrypted_msg[start: start + encrypted_seg_size]
seg_plain_text = private_key.decrypt(
base64.b64decode(seg_encrypted_msg),
asymmetric_padding.OAEP(
mgf=asymmetric_padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA1(),
label=None))
plain_text += seg_plain_text
start += encrypted_seg_size
return plain_text
except (TypeError, ValueError):
print 'failed to decrypt the text asymmetrically, exit the program!'
exit(-1)
# verify the sign with private key, and return the result
def verify_signature(public_key, message, signature):
try:
public_key.verify(
base64.b64decode(signature),
message,
asymmetric_padding.PSS(
mgf=asymmetric_padding.MGF1(hashes.SHA256()),
salt_length=asymmetric_padding.PSS.MAX_LENGTH
),
hashes.SHA256()
)
return True
except InvalidSignature:
return False
def generate_hash(data, salt=''):
digest = hashes.Hash(hashes.SHA256(), backend=default_backend())
if salt != '':
digest.update(salt)
digest.update(data)
hash_val = base64.b64encode(digest.finalize())
return hash_val
# The Elliptic Curve Diffie-Hellman Key Exchange algorithm
def generate_dh_key_pair():
dh_pri_key = ec.generate_private_key(
ec.SECP384R1, default_backend()
)
dh_pub_key = dh_pri_key.public_key()
return dh_pri_key, dh_pub_key
def generate_shared_dh_key(x_pri_key, y_pub_key):
shared_key = x_pri_key.exchange(ec.ECDH(), y_pub_key)
xkdf = X963KDF(
algorithm=hashes.SHA256(),
length=32,
sharedinfo=None,
backend=default_backend()
)
return base64.b64encode(xkdf.derive(shared_key))
def serialize_pri_key(pri_key):
serialized_pri_key = pri_key.private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.PKCS8,
encryption_algorithm=serialization.NoEncryption()
)
return base64.b64encode(serialized_pri_key)
def deserialize_pri_key(serialized_pri_key):
pri_key = serialization.load_pem_private_key(
base64.b64decode(serialized_pri_key),
password=None,
backend=default_backend()
)
return pri_key
def serialize_pub_key(pub_key):
serialized_pub_key = pub_key.public_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PublicFormat.SubjectPublicKeyInfo
)
return base64.b64encode(serialized_pub_key)
def deserialize_pub_key(serialized_pub_key):
pub_key = serialization.load_pem_public_key(
base64.b64decode(serialized_pub_key),
backend=default_backend()
)
return pub_key
def load_private_key(key_file):
with open(key_file, 'r') as f:
private_key_str = f.read()
return deserialize_pri_key(base64.b64encode(private_key_str))
def load_public_key(key_file):
with open(key_file, 'r') as f:
public_key_str = f.read()
return deserialize_pub_key(base64.b64encode(public_key_str))