-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
163 lines (118 loc) · 4.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
'''
using DALI batch_size= 256 costs 4.06 minutes for one epoch
without DALI, it costs 12 minutes
'''
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
from torch.autograd import Variable
from torch.optim.lr_scheduler import MultiStepLR
from datahelper import DataHelper
from torch.utils.data import DataLoader
from loss import SSIM
import numpy as np
from model import benchmark
from unet import UNet
from datahelperDALI import get_iter_dali
USE_GPU= True
LR= 1e-3
BSIZE= 32
EPOCH= 100
def init_weights(m):
classname= m.__class__.__name__
if classname.find('conv2d')!=-1:
m.weight.data.uniform(0.0,1.0)
m.bias.data.fill_(0.0)
def num_params(net):
num_params= 0
for param in net.parameters():
num_params+= param.numel()
print('Total number of parameters: %d'%num_params)
def train():
data= DataHelper(type='test')
dataLoader= DataLoader(dataset= data, batch_size=BSIZE, shuffle=True)
#load model
model= benchmark()
num_params(model) #print number of parameters
if USE_GPU:
model= model.cuda()
# criterion = SSIM()
criterion= nn.MSELoss()
optimizer= torch.optim.Adam(model.parameters(), lr= LR)
scheduler= MultiStepLR(optimizer, milestones= [20,40,60], gamma=0.1)
for epoch in range(EPOCH):
print('-'*30)
for param in optimizer.param_groups:
print('learning rate: ', param['lr'])
for i, (inputs, target) in enumerate(dataLoader):
optimizer.zero_grad()
model.train()
inputs, target= Variable(inputs), Variable(target)
if USE_GPU:
inputs, target= inputs.cuda(), target.cuda()
criterion= criterion.cuda()
out= model(inputs)
loss= criterion(out[target>0], target[target>0])
acc= nn.MSELoss()(out, target).item()
loss.backward()
optimizer.step()
print('[%d/%d][%d/%d] loss: %.4f Spatial loss: %.4f'%(epoch, EPOCH, i, len(dataLoader), loss.item(), acc))
scheduler.step()
if epoch%50 == 0:
torch.save(model.state_dict, 'model-epoch-%d-benchmark.pth'%epoch)
def trainDALI():
'''
training with DALI as data loader
'''
model= UNet()
model.apply(init_weights)
num_params(model) #print number of parameters
if USE_GPU:
model= model.cuda()
# criterion = SSIM()
criterion= nn.MSELoss()
ssim= SSIM()
optimizer= torch.optim.Adam(model.parameters(), lr= LR)
scheduler= MultiStepLR(optimizer, milestones= [20,40,60], gamma=0.1)
writer= SummaryWriter('./log')
for epoch in range(EPOCH):
print('-'*30)
start= time.time()
for param in optimizer.param_groups:
print('learning rate: ', param['lr'])
train_loader = get_iter_dali(type='train', batch_size=256,
num_threads=8)
for i, data in enumerate(train_loader):
data= data[0]
optimizer.zero_grad()
model.train()
inputs, target= Variable(data['inputs']).to(dtype=torch.float), Variable(data['target']).to(dtype=torch.float)
if USE_GPU:
inputs, target= inputs.cuda(), target.cuda()
criterion= criterion.cuda()
out= model(inputs)
loss= criterion(out[target>0], target[target>0])
acc= ssim(out, target)
loss.backward()
optimizer.step()
print('[%d/%d][%d/%d] loss: %.4f Spatial accuracy: %.4f'%(epoch, EPOCH, i, 485, loss.item(), acc))
if i%10 ==0:
writer.add_scalar('loss', loss.item(), i+1)
writer.add_scalar('accuracy', acc, i+1)
if i% 100 ==0:
model.eval()
out= model(inputs)
# add image to tensorboard
batch_num= np.random.randint(0,BSIZE)
sim= out[batch_num,0,:,:]
sim= utils.make_grid(sim,normalize=True, scale_each=True, nrow=8)
target= utils.make_grid(target.squeeze()[batch_num,:,:],normalize=False, scale_each=True, nrow=8)
writer.add_image('model', sim, i+1)
writer.add_image('target', target, i+1)
scheduler.step()
if (epoch+1)%10 == 0:
torch.save(model.state_dict, 'model-epoch-%d-benchmark-trainset2.pth'%epoch)
end= time.time()
print('training one epoch elapses %.2f minutes!'%((end-start)/60.))
if __name__=='__main__':
train()