-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathconfig.py
141 lines (115 loc) · 6.85 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) Chris Choy ([email protected]) and Wei Dong ([email protected])
#
# Please cite the following papers if you use any part of the code.
# - Christopher Choy, Wei Dong, Vladlen Koltun, Deep Global Registration, CVPR 2020
# - Christopher Choy, Jaesik Park, Vladlen Koltun, Fully Convolutional Geometric Features, ICCV 2019
# - Christopher Choy, JunYoung Gwak, Silvio Savarese, 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR 2019
import argparse
arg_lists = []
parser = argparse.ArgumentParser()
def add_argument_group(name):
arg = parser.add_argument_group(name)
arg_lists.append(arg)
return arg
def str2bool(v):
return v.lower() in ('true', '1')
# yapf: disable
logging_arg = add_argument_group('Logging')
logging_arg.add_argument('--out_dir', type=str, default='outputs')
trainer_arg = add_argument_group('Trainer')
trainer_arg.add_argument('--trainer', type=str, default='WeightedProcrustesTrainer')
# Batch setting
trainer_arg.add_argument('--batch_size', type=int, default=4)
trainer_arg.add_argument('--val_batch_size', type=int, default=1)
# Data loader configs
trainer_arg.add_argument('--train_phase', type=str, default="train")
trainer_arg.add_argument('--val_phase', type=str, default="val")
trainer_arg.add_argument('--test_phase', type=str, default="test")
# Data augmentation
trainer_arg.add_argument('--use_random_scale', type=str2bool, default=False)
trainer_arg.add_argument('--min_scale', type=float, default=0.8)
trainer_arg.add_argument('--max_scale', type=float, default=1.2)
trainer_arg.add_argument('--use_random_rotation', type=str2bool, default=True)
trainer_arg.add_argument('--rotation_range', type=float, default=360)
trainer_arg.add_argument(
'--positive_pair_search_voxel_size_multiplier', type=float, default=1.5)
trainer_arg.add_argument('--save_epoch_freq', type=int, default=1)
trainer_arg.add_argument('--val_epoch_freq', type=int, default=1)
trainer_arg.add_argument('--stat_freq', type=int, default=40, help='Frequency for writing stats to log')
trainer_arg.add_argument('--test_valid', type=str2bool, default=True)
trainer_arg.add_argument('--val_max_iter', type=int, default=400)
trainer_arg.add_argument('--use_balanced_loss', type=str2bool, default=False)
trainer_arg.add_argument('--inlier_direct_loss_weight', type=float, default=1.)
trainer_arg.add_argument('--procrustes_loss_weight', type=float, default=1.)
trainer_arg.add_argument('--trans_weight', type=float, default=1)
trainer_arg.add_argument('--eval_registration', type=str2bool, default=True)
trainer_arg.add_argument('--clip_weight_thresh', type=float, default=0.05, help='Weight threshold for detecting inliers')
trainer_arg.add_argument('--best_val_metric', type=str, default='succ_rate')
# Inlier detection trainer
inlier_arg = add_argument_group('Inlier')
inlier_arg.add_argument('--inlier_model', type=str, default='ResUNetBN2C')
inlier_arg.add_argument('--inlier_feature_type', type=str, default='ones')
inlier_arg.add_argument('--inlier_conv1_kernel_size', type=int, default=3)
inlier_arg.add_argument('--inlier_knn', type=int, default=1)
inlier_arg.add_argument('--knn_search_method', type=str, default='gpu')
inlier_arg.add_argument('--inlier_use_direct_loss', type=str2bool, default=True)
# Feature specific configurations
feat_arg = add_argument_group('feat')
feat_arg.add_argument('--feat_model', type=str, default='SimpleNetBN2C')
feat_arg.add_argument('--feat_model_n_out', type=int, default=16, help='Feature dimension')
feat_arg.add_argument('--feat_conv1_kernel_size', type=int, default=3)
feat_arg.add_argument('--normalize_feature', type=str2bool, default=True)
feat_arg.add_argument('--use_xyz_feature', type=str2bool, default=False)
feat_arg.add_argument('--dist_type', type=str, default='L2')
# Optimizer arguments
opt_arg = add_argument_group('Optimizer')
opt_arg.add_argument('--optimizer', type=str, default='SGD')
opt_arg.add_argument('--max_epoch', type=int, default=100)
opt_arg.add_argument('--lr', type=float, default=1e-1)
opt_arg.add_argument('--momentum', type=float, default=0.8)
opt_arg.add_argument('--sgd_momentum', type=float, default=0.9)
opt_arg.add_argument('--sgd_dampening', type=float, default=0.1)
opt_arg.add_argument('--adam_beta1', type=float, default=0.9)
opt_arg.add_argument('--adam_beta2', type=float, default=0.999)
opt_arg.add_argument('--weight_decay', type=float, default=1e-4)
opt_arg.add_argument('--iter_size', type=int, default=1, help='accumulate gradient')
opt_arg.add_argument('--bn_momentum', type=float, default=0.05)
opt_arg.add_argument('--exp_gamma', type=float, default=0.99)
opt_arg.add_argument('--scheduler', type=str, default='ExpLR')
opt_arg.add_argument('--num_train_iter', type=int, default=-1, help='train N iter if positive')
opt_arg.add_argument('--icp_cache_path', type=str, default="icp")
# Misc
misc_arg = add_argument_group('Misc')
misc_arg.add_argument('--use_gpu', type=str2bool, default=True)
misc_arg.add_argument('--weights', type=str, default=None)
misc_arg.add_argument('--weights_dir', type=str, default=None)
misc_arg.add_argument('--resume', type=str, default=None)
misc_arg.add_argument('--resume_dir', type=str, default=None)
misc_arg.add_argument('--train_num_workers', type=int, default=2)
misc_arg.add_argument('--val_num_workers', type=int, default=1)
misc_arg.add_argument('--test_num_workers', type=int, default=2)
misc_arg.add_argument('--fast_validation', type=str2bool, default=False)
misc_arg.add_argument('--nn_max_n', type=int, default=250, help='The maximum number of features to find nearest neighbors in batch')
# Dataset specific configurations
data_arg = add_argument_group('Data')
data_arg.add_argument('--dataset', type=str, default='ThreeDMatchPairDataset03')
data_arg.add_argument('--voxel_size', type=float, default=0.025)
data_arg.add_argument('--threed_match_dir', type=str, default='.')
data_arg.add_argument('--kitti_dir', type=str, default=None, help="Path to the KITTI odometry dataset. This path should contain <kitti_dir>/dataset/sequences.")
data_arg.add_argument('--kitti_max_time_diff', type=int, default=3, help='max time difference between pairs (non inclusive)')
data_arg.add_argument('--kitti_date', type=str, default='2011_09_26')
# Evaluation
eval_arg = add_argument_group('Data')
eval_arg.add_argument('--hit_ratio_thresh', type=float, default=0.1)
eval_arg.add_argument('--success_rte_thresh', type=float, default=0.3, help='Success if the RTE below this (m)')
eval_arg.add_argument('--success_rre_thresh', type=float, default=15, help='Success if the RTE below this (degree)')
eval_arg.add_argument('--test_random_crop', action='store_true')
eval_arg.add_argument('--test_random_rotation', type=str2bool, default=False)
# Demo
demo_arg = add_argument_group('demo')
demo_arg.add_argument('--pcd0', default="redkitchen_000.ply", type=str)
demo_arg.add_argument('--pcd1', default="redkitchen_010.ply", type=str)
# yapf: enable
def get_config():
args = parser.parse_args()
return args