-
Notifications
You must be signed in to change notification settings - Fork 1
/
optim_utils.py
146 lines (129 loc) · 5.14 KB
/
optim_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import math
import torch
from torch.optim.lr_scheduler import _LRScheduler
class GradualWarmupScheduler(_LRScheduler):
def __init__(
self, optimizer, total_epoch, after_scheduler=None, multiplier=1.0,
):
self.multiplier = multiplier
self.total_epoch = total_epoch
self.after_scheduler = after_scheduler
self.finished = False
super().__init__(optimizer)
def get_lr(self):
if self.last_epoch > self.total_epoch:
if self.after_scheduler:
if not self.finished:
self.after_scheduler.base_lrs = [
base_lr * self.multiplier for base_lr in self.base_lrs
]
self.finished = True
return self.after_scheduler.get_last_lr()
return [base_lr * self.multiplier for base_lr in self.base_lrs]
if self.multiplier == 1.0:
lr = [
base_lr * (float(self.last_epoch) / self.total_epoch)
for base_lr in self.base_lrs
]
else:
lr = [
base_lr
* ((self.multiplier - 1.0) * self.last_epoch / self.total_epoch + 1.0)
for base_lr in self.base_lrs
]
return lr
def step(self, metrics=None):
epoch = self._step_count
if self.finished and self.after_scheduler:
if epoch is None:
self.after_scheduler.step(None)
else:
self.after_scheduler.step(epoch - self.total_epoch)
self._last_lr = self.after_scheduler.get_last_lr()
else:
return super(GradualWarmupScheduler, self).step(epoch)
class CosineAnnealingWarmupRestarts(_LRScheduler):
"""
optimizer (Optimizer): Wrapped optimizer.
first_cycle_steps (int): First cycle step size.
cycle_mult(float): Cycle steps magnification. Default: -1.
max_lr(float): First cycle's max learning rate. Default: 0.1.
min_lr(float): Min learning rate. Default: 0.001.
warmup_steps(int): Linear warmup step size. Default: 0.
gamma(float): Decrease rate of max learning rate by cycle. Default: 1.
last_epoch (int): The index of last epoch. Default: -1.
"""
def __init__(
self,
optimizer: torch.optim.Optimizer,
first_cycle_steps: int,
cycle_mult: float = 1.0,
max_lr: float = 0.1,
min_lr: float = 0.0,
warmup_steps: int = 0,
gamma: float = 1.0,
last_epoch: int = -1,
):
assert warmup_steps < first_cycle_steps
self.first_cycle_steps = first_cycle_steps # first cycle step size
self.cycle_mult = cycle_mult # cycle steps magnification
self.base_max_lr = max_lr # first max learning rate
self.max_lr = max_lr # max learning rate in the current cycle
self.min_lr = min_lr # min learning rate
self.warmup_steps = warmup_steps # warmup step size
self.gamma = gamma # decrease rate of max learning rate by cycle
self.cur_cycle_steps = first_cycle_steps # first cycle step size
self.cycle = 0 # cycle count
self.step_in_cycle = last_epoch # step size of the current cycle
super(CosineAnnealingWarmupRestarts, self).__init__(optimizer, last_epoch)
# set learning rate min_lr
self.init_lr()
def init_lr(self):
self.base_lrs = []
for param_group in self.optimizer.param_groups:
param_group["lr"] = self.min_lr
self.base_lrs.append(self.min_lr)
def get_lr(self):
if self.step_in_cycle == -1:
return self.base_lrs
elif self.step_in_cycle < self.warmup_steps:
return [
(self.max_lr - base_lr) * self.step_in_cycle / self.warmup_steps
+ base_lr
for base_lr in self.base_lrs
]
else:
return [
base_lr
+ (self.max_lr - base_lr)
* (
1
+ math.cos(
math.pi
* (self.step_in_cycle - self.warmup_steps)
/ (self.cur_cycle_steps - self.warmup_steps)
)
)
/ 2
for base_lr in self.base_lrs
]
def step(self, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
self.step_in_cycle = self.step_in_cycle + 1
if epoch >= self.first_cycle_steps:
self.cycle += 1
self.step_in_cycle = -1
self.cur_cycle_steps = (
int((self.cur_cycle_steps - self.warmup_steps) * self.cycle_mult)
+ self.warmup_steps
)
else:
if epoch >= self.first_cycle_steps:
self.step_in_cycle = -1
else:
self.cur_cycle_steps = self.first_cycle_steps
self.step_in_cycle = epoch
self.last_epoch = math.floor(epoch)
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group["lr"] = lr