-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path5-inspect_art_results.R
131 lines (82 loc) · 3.41 KB
/
5-inspect_art_results.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
art_dir <- paste(getwd(), sep = "/", 'results/art')
#################################################################################
# FULLY TRAINED MODELS
#################################################################################
# HIGH- vs. LOW-RES
path <- paste(art_dir, 'high_vs_lowres_gender_per.csv', sep = "/")
d1 <- read.csv(path)
path <- paste(art_dir, 'high_vs_lowres_gender_cnn.csv', sep = "/")
d2 <- read.csv(path)
path <- paste(art_dir, 'high_vs_lowres_words_per.csv', sep = "/")
d3 <- read.csv(path)
path <- paste(art_dir, 'high_vs_lowres_words_cnn.csv', sep = "/")
d4 <- read.csv(path)
# MED- vs. LOW-RES, PD NETWORKS
path <- paste(art_dir, 'gender_pd_per.csv', sep = "/")
d1 <- read.csv(path)
path <- paste(art_dir, 'gender_pd_cnn.csv', sep = "/")
d2 <- read.csv(path)
path <- paste(art_dir, 'words_pd_per.csv', sep = "/")
d3 <- read.csv(path)
path <- paste(art_dir, 'words_pd_cnn.csv', sep = "/")
d4 <- read.csv(path)
# MED- vs. LOW-RES, CD NETWORKS
path <- paste(art_dir, 'gender_cd_per.csv', sep = "/")
d1 <- read.csv(path)
path <- paste(art_dir, 'gender_cd_cnn.csv', sep = "/")
d2 <- read.csv(path)
path <- paste(art_dir, 'words_cd_per.csv', sep = "/")
d3 <- read.csv(path)
path <- paste(art_dir, 'words_cd_cnn.csv', sep = "/")
d4 <- read.csv(path)
# PER vs. CNN
path <- paste(art_dir, 'per_vs_cnn_gender_pd.csv', sep = "/")
d1 <- read.csv(path)
path <- paste(art_dir, 'per_vs_cnn_gender_cd.csv', sep = "/")
d2 <- read.csv(path)
path <- paste(art_dir, 'per_vs_cnn_words_pd.csv', sep = "/")
d3 <- read.csv(path)
path <- paste(art_dir, 'per_vs_cnn_words_cd.csv', sep = "/")
d4 <- read.csv(path)
#################################################################################
# MODELS TRAINED FOR 1 EPOCH
#################################################################################
# MED- vs. LOW-RES, PD NETWORKS
path <- paste(art_dir, 'gender_pd_per_1ep.csv', sep = "/")
d1 <- read.csv(path)
path <- paste(art_dir, 'gender_pd_cnn_1ep.csv', sep = "/")
d2 <- read.csv(path)
path <- paste(art_dir, 'words_pd_per_1ep.csv', sep = "/")
d3 <- read.csv(path)
path <- paste(art_dir, 'words_pd_cnn_1ep.csv', sep = "/")
d4 <- read.csv(path)
# MED- vs. LOW-RES, CD NETWORKS
path <- paste(art_dir, 'gender_cd_per_1ep.csv', sep = "/")
d1 <- read.csv(path)
path <- paste(art_dir, 'gender_cd_cnn_1ep.csv', sep = "/")
d2 <- read.csv(path)
path <- paste(art_dir, 'words_cd_per_1ep.csv', sep = "/")
d3 <- read.csv(path)
path <- paste(art_dir, 'words_cd_cnn_1ep.csv', sep = "/")
d4 <- read.csv(path)
#################################################################################
# MODELS TRAINED FOR 0 EPOCHS
#################################################################################
# MED- vs. LOW-RES, PD NETWORKS
path <- paste(art_dir, 'gender_pd_per_0ep.csv', sep = "/")
d1 <- read.csv(path)
path <- paste(art_dir, 'gender_pd_cnn_0ep.csv', sep = "/")
d2 <- read.csv(path)
path <- paste(art_dir, 'words_pd_per_0ep.csv', sep = "/")
d3 <- read.csv(path)
path <- paste(art_dir, 'words_pd_cnn_0ep.csv', sep = "/")
d4 <- read.csv(path)
# MED- vs. LOW-RES, CD NETWORKS
path <- paste(art_dir, 'gender_cd_per_0ep.csv', sep = "/")
d1 <- read.csv(path)
path <- paste(art_dir, 'gender_cd_cnn_0ep.csv', sep = "/")
d2 <- read.csv(path)
path <- paste(art_dir, 'words_cd_per_0ep.csv', sep = "/")
d3 <- read.csv(path)
path <- paste(art_dir, 'words_cd_cnn_0ep.csv', sep = "/")
d4 <- read.csv(path)