-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathevaluation_test.py
37 lines (31 loc) · 1.53 KB
/
evaluation_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import unittest
from describe_data import *
from evaluate import evaluate
from util import load_json
class EvaluationTest(unittest.TestCase):
def test_identity(self):
print("Preparing data...")
dataset_file = "/mnt/b5320167-5dbd-4498-bf34-173ac5338c8d/Datasets/bmj_case_reports_data/dataset_json_concept_annotated/dev1.0.json"
dataset = load_json(dataset_file)
data = dataset[DATA_KEY]
fake_predictions = {}
for datum in data:
for qa in datum[DOC_KEY][QAS_KEY]:
for ans in qa[ANS_KEY]:
if ans[ORIG_KEY] == "dataset":
fake_predictions[qa[ID_KEY]] = ans[TXT_KEY]
print("Evaluating...")
score = evaluate(dataset, fake_predictions, extended=True, embeddings_file="/mnt/b5320167-5dbd-4498-bf34-173ac5338c8d/Datasets/bmj_case_reports_data/embeddings/c47cfee6-3fc4-11e7-b5a2-4ccc6a436494/embeddings", downcase=True)
print("Testing {}".format(score.keys()))
self.assertEqual(score["f1"], 100)
self.assertEqual(score["exact_match"], 100)
self.assertAlmostEqual(score["Bleu_1"], 1)
self.assertAlmostEqual(score["Bleu_2"], 1)
self.assertAlmostEqual(score["Bleu_3"], 1)
self.assertAlmostEqual(score["Bleu_4"], 1)
self.assertAlmostEqual(score["ROUGE_L"], 1)
self.assertAlmostEqual(score["emb-average"], 1)
self.assertAlmostEqual(score["emb-greedy"], 1)
self.assertAlmostEqual(score["emb-extrema"], 1)
if __name__ == '__main__':
unittest.main()