-
Notifications
You must be signed in to change notification settings - Fork 39
/
randomized_hyperparameter_search.py
71 lines (57 loc) · 2.06 KB
/
randomized_hyperparameter_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import random
import numpy as np
def embedding_parameter_space():
return {
#"domain": ["clinical", "mixed_news_clinical", "pubmed", "pubmed_wiki"],
#"dimension": list(range(50, 850, 50)),
"dimension": [200],
"win_size": list(range(1, 11)),
#"min_freq": list(range(1, 11)),
"min_freq": [200],
"neg_samples": list(range(1, 11)),
"model": ["skipgram", "cbow"]
}
def stanford_reader_parameter_space():
return {
"hidden_size": (16, 160),
"dropout_rate": (0.2, 0.9999)
#"optimizer": ["sgd", "rmsprop"]
#"grad_clipping":
}
class RandomizedSearch:
def __init__(self, parameter_space):
self.parameter_space = parameter_space()
def size_parameter_space(self):
size = 1
for param, val in self.parameter_space.items():
size *= len(val)
return size
def sample(self):
sampled = {}
for param, val in self.parameter_space.items():
if isinstance(val, list):
sampled[param] = self.draw(val)
elif isinstance(val, tuple) and len(val) == 2:
assert val[1] >= val[0]
if param == "dropout_rate":
sampled[param] = self.uniform_draw(val[0], val[1])
else:
# use Bergstra and Bengio's geometric draw
sampled[param] = self.geometric_draw(val[0], val[1])
else:
raise TypeError
return sampled
def draw(self, lst):
return random.choice(lst)
def uniform_draw(self, min_val, max_val):
return np.float32(np.random.uniform(min_val, max_val))
def geometric_draw(self, min_val, max_val):
def formatted(x):
assert type(min_val) == type(max_val)
if isinstance(min_val, int):
return int(x)
elif isinstance(min_val, float):
return np.float32(x)
else:
raise TypeError
return formatted(np.exp(np.random.uniform(np.log(min_val), np.log(max_val))))