-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathcreate_sppmi.py
186 lines (144 loc) · 6.85 KB
/
create_sppmi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2014 Radim Rehurek <[email protected]>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
import logging
import json
import numpy as np
import pyximport; pyximport.install(setup_args={'include_dirs': np.get_include()})
import gensim
import time
from cooccur_matrix import get_cooccur
from gensim import utils, matutils
from gensim.corpora import Dictionary
from sentences import SentenceIter
logger = logging.getLogger(__name__)
class SPPMIFactory(object):
"""
A class for creating SPPMI matrices out of a raw corpus.
Based on code by Radim Rehurek: www.github.com/piskvorky/
"""
@staticmethod
def _save_freqs(di, outpath):
"""
Save the word frequencies to a file path as a JSON file.
:param di: the dictionary.
:param outpath: the path to which to save the word frequencies.
:return:
"""
f = di.dfs
wordfreqs = {k: f[v] for k, v in di.token2id.items()}
json.dump(wordfreqs, open(outpath, 'w'))
@staticmethod
def _save_sparse_mtr(sparse_mtr, filename):
"""
Save a sparse matrix to a specified filepath.
snippet from: http://stackoverflow.com/questions/8955448/save-load-scipy-sparse-csr-matrix-in-portable-data-format
:param sparse_mtr: the matrix to save.
:param filename: the filename to which to save the matrix.
:return:
"""
np.savez(filename, data=sparse_mtr.data, indices=sparse_mtr.indices,
indptr=sparse_mtr.indptr, shape=sparse_mtr.shape)
@staticmethod
def _save_word2id(word2id, filename):
"""
Saves the word2id mapping as a JSON file.
:param word2id: the word2id mapping.
:param filename: the filename to which to save.
:return: None
"""
json.dump(word2id, open(filename, 'w'))
@staticmethod
def create(pathtomapping, pathtocorpus, corpusname, window, numtokeep=50000, save_raw=True, shifts=(1, 5, 10)):
"""
Creates an Shifted Positive Pointwise Mutual Information matrix.
:param pathtomapping: The path to the id2word mapping. If this is left empty, the id2word mapping gets
recreated. Warning: this takes a long time.
:param pathtocorpus: The path to the corpus folder. The corpus can be spread out over multiple files or folders,
and is read iteratively.
:param corpusname: The name of the corpus. Used for saving the files.
:param window: The window used to consider co-occurrences.
:param numtokeep: The number of most frequent words to keep. Note that the matrix is non-sparse.
Because of this, the memory requirements of the code are quadratic.
:param save_raw: Whether to save the raw co-occurrence matrix as a numpy matrix.
:param shifts: The shifts to apply to the co-occurrence matrix. Each shifted matrix
gets saved as a separate model.
"""
start = time.time()
if not pathtomapping:
id2word = Dictionary(SentenceIter(pathtocorpus), prune_at=None)
id2word.filter_extremes(no_below=5, keep_n=numtokeep)
id2word.compactify()
logger.info("Creating the word2id took {0} seconds".format(time.time() - start))
else:
id2word = Dictionary.load(pathtomapping)
inter = time.time()
word2id = gensim.utils.revdict(id2word)
corpus = SentenceIter(pathtocorpus)
raw = get_cooccur(corpus, word2id, window=window)
logger.info("Creating raw co-occurrence matrix took {0} seconds".format(time.time() - inter))
if save_raw:
np.save('{0}-cooccur.npy'.format(corpusname), raw)
SPPMIFactory._save_word2id(word2id, "{0}mapping.json".format(corpusname))
SPPMIFactory._save_freqs(id2word, "{0}freqs.json".format(corpusname))
raw = SPPMIFactory.raw2pmi(raw)
for k in shifts:
sparse = SPPMIFactory.shift_clip_pmi(np.copy(raw), k_shift=k)
SPPMIFactory._save_sparse_mtr(sparse, "{0}-SPPMI-sparse-{1}-shift.npz".format(corpusname, k))
del sparse
@staticmethod
def raw2ppmi(pathtoraw, corpusname, shifts=(1, 5, 10)):
"""
Creates a PPMI matrix out of a raw co-occurrence matrix.
First a PMI matrix is created (see raw2pmi, below).
Any negative entries in this matrix are then truncated to 0 and shifted by a factor of -log(k).
This function can take multiple shift magnitudes, each of which is performed and saved separately.
:param pathtoraw: The path to the raw co-occurrence matrix.
:param corpusname: The name of the corpus.
:param shifts: A tuple containing shift magnitudes.
:return: None
"""
# Create the PMI matrix
pmi = SPPMIFactory.raw2pmi(np.load(pathtoraw))
for k in shifts:
# Shift and clip a copy of the pmi matrix.
sparse = SPPMIFactory.shift_clip_pmi(np.copy(pmi), k_shift=k)
# save the PPMI matrix.
SPPMIFactory._save_sparse_mtr(sparse, "{0}-SPPMI-sparse-{1}-shift.npz".format(corpusname, k))
del sparse
@staticmethod
def raw2pmi(cooccur):
"""
Computes PMI scores for a matrix of co-occurrence counts.
All shifts are done in place.
:param cooccur: The co-occurrence matrix.
:return: A shifted matrix.
"""
logger.info("computing PPMI on co-occurence counts")
# following lines a bit tedious, as we try to avoid making temporary copies of the (large) `cooccur` matrix
marginal_word = cooccur.sum(axis=1)
marginal_context = cooccur.sum(axis=0)
cooccur /= marginal_word[:, None] # #(w, c) / #w
cooccur /= marginal_context # #(w, c) / (#w * #c)
cooccur *= marginal_word.sum() # #(w, c) * D / (#w * #c)
np.log(cooccur, out=cooccur) # PMI = log(#(w, c) * D / (#w * #c))
return cooccur
@staticmethod
def shift_clip_pmi(pmimtr, k_shift=1.0):
"""
Turns a pmi matrix into a PPMI matrix by setting all negative values to 0 and then shifting by a factor of
-log(k).
:param pmimtr: The matrix of PMI values.
:param k_shift: The shift factor.
:return: A PPMI matrix.
"""
logger.info("shifting PMI scores by log(k) with k=%s" % (k_shift, ))
pmimtr -= np.log(k_shift) # shifted PMI = log(#(w, c) * D / (#w * #c)) - log(k)
logger.info("clipping PMI scores to be non-negative PPMI")
pmimtr.clip(0.0, out=pmimtr) # SPPMI = max(0, log(#(w, c) * D / (#w * #c)) - log(k))
logger.info("normalizing PPMI word vectors to unit length")
for i, vec in enumerate(pmimtr):
pmimtr[i] = matutils.unitvec(vec)
return matutils.corpus2csc(matutils.Dense2Corpus(pmimtr, documents_columns=False)).T