-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
240 lines (202 loc) · 9.22 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# adapter from https://github.com/huggingface/transformers/blob/master/examples/pytorch/token-classification/run_ner.py
import os
import sys
import torch
import logging
import pandas as pd
import torch.distributed as dist
from typing import Optional, List
from dataclasses import dataclass, field
from datasets import load_dataset, interleave_datasets
from transformers import set_seed, EarlyStoppingCallback
from transformers import Trainer, TrainingArguments, HfArgumentParser
from transformers import AutoModel, AutoTokenizer
from collections import OrderedDict
from transformers.trainer_utils import get_last_checkpoint
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
from dataloader import IterableDataset, ValidationDataset
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
gradient_checkpointing: bool = field(default=False)
hidden_dropout_prob: float = field(default=0.1)
attention_probs_dropout_prob: float = field(default=0.1)
model_name_or_path: str = field(default="xlm-roberta-base")
config_name: Optional[str] = field(default=None)
tokenizer_name: Optional[str] = field(default=None)
cache_dir: Optional[str] = field(default=None)
model_revision: str = field(default="main")
@dataclass
class DataTrainingArguments:
preprocessing_num_workers: Optional[int] = field(default=None)
max_seq_length: int = field(default=None)
languages: Optional[List[str]] = field(default=None)
probabilities: Optional[List[float]] = field(default=None)
overwrite_cache: bool = field(default=False)
pad_to_max_length: bool = field(default=False)
single_domain: bool = field(default=False)
alpha: float = field(default=0.3)
no_special_token: bool = field(default=False)
limit_valid_size: Optional[int] = field(default=None)
@dataclass
class CustomTrainingArgument(TrainingArguments):
distributed_softmax: bool = field(default=False)
def distributed_softmax(q_output, a_output, rank, world_size):
q_list = [torch.zeros_like(q_output) for _ in range(world_size)]
a_list = [torch.zeros_like(a_output) for _ in range(world_size)]
dist.all_gather(tensor_list=q_list, tensor=q_output.contiguous())
dist.all_gather(tensor_list=a_list, tensor=a_output.contiguous())
q_list[rank] = q_output
a_list[rank] = a_output
q_output = torch.cat(q_list, 0)
a_output = torch.cat(a_list, 0)
return q_output, a_output
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output["last_hidden_state"] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
page_id = inputs.pop("page_id", None)
outputs = model(**inputs)
sentence_embeddings = mean_pooling(outputs, inputs['attention_mask'])
q_logits, a_logits = torch.chunk(sentence_embeddings, 2)
if self.args.distributed_softmax and self.args.local_rank != -1 and return_outputs is False:
q_logits, a_logits = distributed_softmax(
q_logits, a_logits, self.args.local_rank, self.args.world_size
)
labels = torch.arange(q_logits.size(0), device=a_logits.device)
cross_entropy = torch.nn.CrossEntropyLoss()
dp = q_logits.mm(a_logits.transpose(0, 1))
labels = torch.arange(dp.size(0), device=dp.device)
loss = cross_entropy(dp, labels)
if return_outputs:
outputs = OrderedDict({"q_logits": q_logits, "a_logits": a_logits, "page_id": page_id})
return (loss, outputs) if return_outputs else loss
def get_acc_rr(q_logits, a_logits):
q_logits = torch.from_numpy(q_logits)
a_logits = torch.from_numpy(a_logits)
dp = q_logits.mm(a_logits.transpose(0, 1))
indices = torch.argsort(dp, dim=-1, descending=True)
targets = torch.arange(indices.size(0), device=indices.device).view(-1, 1)
targets = targets.expand_as(indices)
hits = (targets == indices).nonzero()
ranks = hits[:, -1] + 1
ranks = ranks.float()
acc = ranks.eq(1).float().squeeze()
rr = torch.reciprocal(ranks).squeeze()
return rr, acc
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArgument))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
training_args.remove_unused_columns = False
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
set_seed(training_args.seed)
model_kwargs = dict(
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
hidden_dropout_prob=model_args.hidden_dropout_prob,
attention_probs_dropout_prob=model_args.attention_probs_dropout_prob,
add_pooling_layer=False
)
if model_args.gradient_checkpointing:
# CANINE does not supporte
model_kwargs["gradient_checkpointing"] = True
model = AutoModel.from_pretrained(
model_args.model_name_or_path,
**model_kwargs
)
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
additional_special_tokens=None if data_args.no_special_token else ["<Q>", "<A>", "<link>"]
)
if not data_args.no_special_token:
model.resize_token_embeddings(len(tokenizer))
datasets = [load_dataset("clips/mfaq", l) for l in data_args.languages]
train_datasets = [e["train"] for e in datasets]
eval_datasets = [e["validation"] for e in datasets]
if data_args.limit_valid_size:
raise
eval_datasets = [e.select(range(data_args.limit_valid_size)) for e in eval_datasets]
eval_dataset = ValidationDataset(interleave_datasets(eval_datasets))
if training_args.do_train:
world_size = 1 if training_args.world_size is None else training_args.world_size
train_dataset = IterableDataset(
train_datasets,
data_args.languages,
probabilities=data_args.probabilities,
batch_size=training_args.per_device_train_batch_size*world_size,
seed=training_args.seed,
single_domain=data_args.single_domain,
alpha=data_args.alpha
)
padding = "max_length" if data_args.pad_to_max_length else True
def collate_fn(batch):
questions, answers, page_ids = [], [], []
for item in batch:
questions.append(item['question'] if data_args.no_special_token else f"<Q>{item['question']}")
answers.append(item['answer'] if data_args.no_special_token else f"<A>{item['answer']}")
page_ids.append(item["page_id"])
output = tokenizer(
questions + answers,
padding=padding,
truncation=True,
max_length=data_args.max_seq_length,
return_tensors="pt",
pad_to_multiple_of=8
)
output["page_id"] = torch.Tensor(page_ids)
return output
def compute_metrics(predictions):
q_output, a_output, page_id = predictions.predictions
unique_page_ids = set(page_id.tolist())
global_rr, global_acc, pp_mrr, pp_acc = [], [], [], []
for unique_page_id in unique_page_ids:
selector = page_id == unique_page_id
s_q_output = q_output[selector, :]
s_a_output = a_output[selector, :]
rr, acc = get_acc_rr(s_q_output, s_a_output)
global_rr.append(rr)
global_acc.append(acc)
pp_mrr.append(rr.mean())
pp_acc.append(acc.mean())
global_mrr = torch.cat(global_rr).mean()
global_acc = torch.cat(global_acc).mean()
per_page_mrr = torch.stack(pp_mrr).mean()
per_page_acc = torch.stack(pp_acc).mean()
return {"global_mrr": global_mrr, "global_acc": global_acc, "per_page_mrr": per_page_mrr, "per_page_acc": per_page_acc}
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=collate_fn,
compute_metrics=compute_metrics
)
if training_args.do_train:
train_result = trainer.train()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
if training_args.do_predict:
logger.info("*** Predict ***")
_, _, metrics = trainer.predict(eval_dataset, metric_key_prefix="predict")
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()