-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
385 lines (298 loc) · 15.2 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import torch
import gradio as gr
from torch.utils.data import DataLoader, Dataset
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments, TrainerCallback
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.metrics import precision_recall_fscore_support, accuracy_score, hamming_loss, classification_report, ndcg_score
import wandb
import json
import os
import pandas as pd
from mlcm import cm, matrix_to_heatmap
import numpy as np
import plotly.graph_objects as go
import safetensors
from torch.utils.data import DataLoader
from tqdm import tqdm
class CustomDataset(Dataset):
def __init__(self, texts, labels, tokenizer, max_length):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
encoding = self.tokenizer(text, padding='max_length', truncation=True, max_length=self.max_length, return_tensors='pt')
encoding = {key: val.squeeze(0) for key, val in encoding.items()}
if self.labels is not None:
labels = self.labels[idx]
encoding['labels'] = torch.tensor(labels, dtype=torch.float)
return encoding
class SaveTokenizerCallback(TrainerCallback):
def __init__(self, tokenizer, save_path):
self.tokenizer = tokenizer
self.save_path = save_path
def on_save(self, args, state, control, **kwargs):
# Save the tokenizer at each checkpoint
checkpoint_path = f"{self.save_path}/checkpoint-{state.global_step}"
self.tokenizer.save_pretrained(checkpoint_path)
def prepare_data(df, mlb, tokenizer, no_labels, max_length):
texts = df.text
labels = None
if not no_labels:
labels = mlb.transform(df.labels)
dataset = CustomDataset(texts, labels=labels, tokenizer=tokenizer, max_length=max_length)
return dataset
def compute_metrics(pred):
labels = pred.label_ids
sig = torch.sigmoid(torch.tensor(pred.predictions))
preds = sig > 0.5
# Micro and Macro Precision, Recall, F1
micro_precision, micro_recall, micro_f1, _ = precision_recall_fscore_support(labels, preds, average='micro')
macro_precision, macro_recall, macro_f1, _ = precision_recall_fscore_support(labels, preds, average='macro')
# Exact Match Ratio (Accuracy)
exact_match = accuracy_score(labels, preds)
# Hamming Loss
h_loss = hamming_loss(labels, preds)
# NDCG@k
ndcg_1 = ndcg_score(labels, sig, k=1)
ndcg_3 = ndcg_score(labels, sig, k=3)
ndcg_5 = ndcg_score(labels, sig, k=5)
ndcg_10 = ndcg_score(labels, sig, k=10)
# Sample-wise F1
sample_f1 = precision_recall_fscore_support(labels, preds, average='samples')[2]
metrics = {
"micro_precision": micro_precision,
"micro_recall": micro_recall,
"micro_f1": micro_f1,
"macro_precision": macro_precision,
"macro_recall": macro_recall,
"macro_f1": macro_f1,
"exact_match_ratio": exact_match,
"hamming_loss": h_loss,
"sample_f1": sample_f1,
"ndcg@1": ndcg_1,
"ndcg@3": ndcg_3,
"ndcg@5": ndcg_5,
"ndcg@10": ndcg_10
}
return metrics
def predict(test_dataset, model, batch_size):
predictions = []
loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
with torch.no_grad():
for batch in tqdm(loader):
inputs = {k: v.to(model.device) for k, v in batch.items()} # Exclude 'labels' if not present
outputs = model(**inputs)
logits = outputs.logits.cpu()
sig = torch.sigmoid(torch.tensor(logits))
preds = (sig > 0.5).int().numpy()
predictions.append(preds.tolist())
return predictions, sig
def finetune_transformer(
output_dir,
train_df,
val_df,
test_df,
model_name,
batch_size,
max_length,
learning_rate,
n_epochs,
operations,
save_best_metric="macro_f1"
):
# Ensure output directory exists
os.makedirs(output_dir, exist_ok=True)
# Initialiaz MLB
mlb = MultiLabelBinarizer()
batch_size = int(batch_size)
# Parse operations to be performed
if 'Train' in operations and 'Test' in operations:
if 'labels' in test_df.columns:
only_predict = False
train_labels, val_labels, test_labels = train_df.labels.tolist(), val_df.labels.tolist(), test_df.labels.tolist()
mlb.fit(train_labels + val_labels + test_labels)
else:
only_predict = True
train_labels, val_labels = train_df.labels.tolist(), val_df.labels.tolist()
mlb.fit(train_labels + val_labels)
num_labels = len(mlb.classes_)
elif 'Train' in operations and 'Test' not in operations:
train_labels, val_labels = train_df.labels.tolist(), val_df.labels.tolist()
mlb.fit(train_labels + val_labels)
num_labels = len(mlb.classes_)
else:
if 'labels' in test_df.columns:
only_predict = False
test_labels = test_df.labels.tolist()
mlb.fit(test_labels)
num_labels = len(mlb.classes_)
else:
only_predict = True
# Training a model
if 'Train' in operations:
# save classes to load later for inference
with open(os.path.join(output_dir, 'classes.json'), 'w', encoding='utf8') as f:
json.dump(list(mlb.classes_), f)
# load model
try:
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels, problem_type="multi_label_classification")
tokenizer = AutoTokenizer.from_pretrained(model_name)
except OSError:
raise gr.Error(f"Model '{model_name}' might not exist. Visit https://huggingface.co/models for an overview of remote models, or load a valid local model.")
# create datasets
train_dataset = prepare_data(train_df, mlb, tokenizer, no_labels=False, max_length=max_length)
val_dataset = prepare_data(val_df, mlb, tokenizer, no_labels=False, max_length=max_length)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model.to(device)
training_args = TrainingArguments(
learning_rate=float(learning_rate),
output_dir=output_dir,
eval_strategy="epoch",
save_strategy="epoch",
logging_dir='./logs',
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=int(n_epochs),
load_best_model_at_end=True,
metric_for_best_model=save_best_metric,
save_total_limit=int(n_epochs),
report_to='wandb',
# run_name = f'{model_name}_{batch_size}_{learning_rate}'
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics=compute_metrics,
callbacks=[SaveTokenizerCallback(tokenizer, training_args.output_dir)]
)
# Train and evaluate
try:
trainer.train()
# Evaluate on test set
if 'Test' in operations:
# Load best model based on metric
best_model_path = os.path.join(output_dir, "pytorch_model.bin")
if os.path.exists(best_model_path):
model = AutoModelForSequenceClassification.from_pretrained(output_dir)
test_dataset = prepare_data(test_df, mlb, tokenizer, no_labels=only_predict, max_length=max_length)
if only_predict:
test_dataset = prepare_data(test_df, mlb, tokenizer, no_labels=True, max_length=max_length)
preds, sig = predict(test_dataset, model, batch_size)
with open(os.path.join(output_dir, f"predictions.json"), 'w') as f:
json.dump(preds, f)
with open(os.path.join(output_dir, f"probabilities.json"), 'w') as f:
json.dump(sig.tolist(), f)
return pd.DataFrame(), pd.DataFrame(), go.Figure(), pd.DataFrame(), ""
else:
test_results = trainer.predict(test_dataset)
logits = test_results.predictions
label_ids = test_results.label_ids
test_metrics = test_results.metrics
sig = torch.sigmoid(torch.tensor(logits))
preds = (sig > 0.5).int().numpy()
# Log metrics to wandb
wandb.log(test_metrics)
wandb.finish()
# Save metrics to JSON
metrics_json_path = os.path.join(output_dir, "metrics.json")
with open(metrics_json_path, 'w') as f:
json.dump(test_metrics, f)
metric_df = pd.DataFrame(data = {"metric":test_metrics.keys(), "Score": test_metrics.values()})
metric_df['Score'] = metric_df['Score'].apply(lambda x: round(x, 5))
report_df = pd.DataFrame(classification_report(label_ids, preds, output_dict=True, target_names=mlb.classes_)).transpose()
report_df['class'] = report_df.index
report_df = report_df[['class', 'precision', 'recall', 'f1-score', 'support']]
report_df[['precision', 'recall', 'f1-score']] = report_df[['precision', 'recall', 'f1-score']].apply(lambda x: round(x, 5))
# get confusion matrix and save
_, cnf_matrix = cm(label_ids, preds, False)
cnf_matrix_fig = matrix_to_heatmap(cnf_matrix, labels=mlb.classes_)
cnf_matrix_fig.write_html("./visualizations/confusion_matrix.html")
# save predictions
with open(os.path.join(output_dir, f"predictions.json"), 'w') as f:
json.dump(preds.tolist(), f)
with open(os.path.join(output_dir, f"probabilities.json"), 'w') as f:
json.dump(sig.tolist(), f)
# save metric df and classification report
metric_df.to_json(os.path.join(output_dir, 'test_results.json'))
report_df.to_json(os.path.join(output_dir, 'classification_report.json'))
return metric_df, report_df, cnf_matrix_fig, pd.DataFrame(), ""
else:
return pd.DataFrame(), pd.DataFrame(), go.Figure(), pd.DataFrame(), ""
# Catch potential OOM error
except torch.cuda.OutOfMemoryError as e:
message = "GPU out of memory. Try lowering the batch size or loading a smaller model!"
return None, None, None, None, message
# Only inference on test set using trained model
elif 'Test' in operations and 'Train' not in operations:
try:
tokenizer = AutoTokenizer.from_pretrained(model_name) # model_name = fine-tuned local model in this case
model = AutoModelForSequenceClassification.from_pretrained(model_name, ignore_mismatched_sizes=True)
except OSError:
raise gr.Error(f"Model could not be loaded from '{model_name}'. Please ensure the model is available.")
# Prepare the test dataset
try:
if only_predict:
test_dataset = prepare_data(test_df, mlb, tokenizer, no_labels=True, max_length=max_length)
preds = predict(test_dataset, model, batch_size)
# save predictions
with open(os.path.join(output_dir, f"predictions.json"), 'w') as f:
json.dump(preds, f)
return pd.DataFrame(), pd.DataFrame(), go.Figure(), pd.DataFrame(), ""
# only make predictions
else:
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model.to(device)
with open(os.path.join(output_dir, 'classes.json'), 'r', encoding='utf8') as f:
classes = json.load(f)
mlb = MultiLabelBinarizer(classes=classes)
mlb.fit(test_df.labels.tolist())
test_dataset = prepare_data(test_df, mlb, tokenizer, no_labels=False, max_length=max_length)
# Create a Trainer instance for evaluation
trainer = Trainer(
model=model,
compute_metrics=compute_metrics
)
# Predict test set
test_results = trainer.predict(test_dataset)
logits = test_results.predictions
sig = torch.sigmoid(torch.tensor(logits))
preds = (sig > 0.5).int().numpy()
preds = [p.tolist() for p in preds]
label_ids = test_results.label_ids
test_metrics = test_results.metrics
# Log metrics and save them to JSON
wandb.log(test_metrics)
metrics_json_path = os.path.join(output_dir, "test_metrics.json")
with open(metrics_json_path, 'w') as f:
json.dump(test_metrics, f)
# Prepare metrics DataFrame and classification report
metric_df = pd.DataFrame(data={"metric": test_metrics.keys(), "Score": test_metrics.values()})
metric_df['Score'] = metric_df['Score'].apply(lambda x: round(x, 5))
report_df = pd.DataFrame(classification_report(label_ids, preds, output_dict=True, target_names=mlb.classes_)).transpose()
report_df['class'] = report_df.index
report_df = report_df[['class', 'precision', 'recall', 'f1-score', 'support']]
report_df[['precision', 'recall', 'f1-score']] = report_df[['precision', 'recall', 'f1-score']].apply(lambda x: round(x, 5))
# Generate the confusion matrix heatmap and save
_, cnf_matrix = cm(label_ids, preds, False)
cnf_matrix_fig = matrix_to_heatmap(cnf_matrix, labels=mlb.classes_)
cnf_matrix_fig.write_html("./visualizations/confusion_matrix.html")
# save predictions
with open(os.path.join(output_dir, f"predictions.json"), 'w') as f:
json.dump(preds, f)
with open(os.path.join(output_dir, f"probabilities.json"), 'w') as f:
json.dump(sig.tolist(), f)
# save metric df and classification report
metric_df.to_json('./results/test_results.json')
report_df.to_json('./results/classification_report.json')
return metric_df, report_df, cnf_matrix_fig, pd.DataFrame(), ""
# Catch potential OOM error
except torch.cuda.OutOfMemoryError as e:
message = "GPU out of memory. Try lowering the batch size or loading a smaller model!"
return None, None, None, None, message