forked from adi-code22/SitharaBot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
53 lines (45 loc) · 1.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import Embedding, LSTM, Dense, Bidirectional, Dropout
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow import keras
import numpy as np
from keras.models import model_from_json
data = open('.\\Dataset1-Sithara.txt').read()
# open('enter location of dataset')
# print(data)
corpus = data.lower().split("\n")
corpus = list(set(corpus))
tokenizer = Tokenizer()
tokenizer.fit_on_texts(corpus)
total_words = len(tokenizer.word_index) + 1
# print(tokenizer.word_index)
input_sequences = []
for line in corpus:
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i + 1]
input_sequences.append(n_gram_sequence)
# print(n_gram_sequence)
max_sequence_len = max([len(x) for x in input_sequences])
json_file=open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model=model_from_json(loaded_model_json)
loaded_model.load_weights('model.h5')
model=loaded_model
seed_text=input()
next_words=10
for _ in range(next_words):
token_list = tokenizer.texts_to_sequences([seed_text])[0]
token_list = pad_sequences([token_list],maxlen=max_sequence_len-1,padding='pre')
predicted = model.predict_classes(token_list, verbose=0)
output_word = ""
for word, index in tokenizer.word_index.items():
if index == predicted:
output_word = word
break
seed_text += " " + output_word
print(seed_text)