-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSIRS without vd.nb
9472 lines (9397 loc) · 468 KB
/
SIRS without vd.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 479384, 9463]
NotebookOptionsPosition[ 476090, 9364]
NotebookOutlinePosition[ 476726, 9388]
CellTagsIndexPosition[ 476639, 9383]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[", "\"\<Global`*\>\"", "]"}], "\[IndentingNewLine]",
RowBox[{"Needs", "[", "\"\<PlotLegends`\>\"", "]"}], "\n",
RowBox[{
RowBox[{"eq1", "=",
RowBox[{
RowBox[{
RowBox[{"-", "\[Beta]"}], " ", "*", " ",
RowBox[{"s", "[", "t", "]"}], "*", " ",
FractionBox[
RowBox[{"i", "[", "t", "]"}], "n"]}], "+",
RowBox[{"\[Nu]", " ",
RowBox[{"r", "[", "t", "]"}]}]}]}], ";"}], "\n",
RowBox[{
RowBox[{"eq2", "=",
RowBox[{
RowBox[{"\[Beta]", "*",
RowBox[{"s", "[", "t", "]"}], "*",
FractionBox[
RowBox[{"i", "[", "t", "]"}], "n"]}], "-",
RowBox[{"\[Gamma]", "*",
RowBox[{"i", "[", "t", "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"eq3", "=",
RowBox[{
RowBox[{"\[Gamma]", "*",
RowBox[{"i", "[", "t", "]"}]}], "-",
RowBox[{"\[Nu]", " ",
RowBox[{"r", "[", "t", "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Beta]", "=", "0.95"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Gamma]", "=", "1.0"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Nu]", "=", "0.5"}], ";"}], "\[IndentingNewLine]",
RowBox[{"R0", "=",
RowBox[{"N", "[",
FractionBox["\[Beta]", "\[Gamma]"], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tf", "=", "100"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"szero", "=", "0.90"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"izero", "=", "0.1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"rzero", "=", "0.0"}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"sol", "=",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"s", "'"}], "[", "t", "]"}], "\[Equal]", "eq1"}], ",",
RowBox[{
RowBox[{
RowBox[{"i", "'"}], "[", "t", "]"}], "\[Equal]", "eq2"}], ",",
RowBox[{
RowBox[{
RowBox[{"r", "'"}], "[", "t", "]"}], "\[Equal]", "eq3"}], ",",
RowBox[{
RowBox[{"s", "[", "0", "]"}], "\[Equal]", "szero"}], ",",
RowBox[{
RowBox[{"i", "[", "0", "]"}], "\[Equal]", "izero"}], ",",
RowBox[{
RowBox[{"r", "[", "0", "]"}], "\[Equal]", "rzero"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"s", ",", "i", ",", "r"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "tf"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot1", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"a", "[", "t", "]"}], "=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"s", "[", "t", "]"}], "/.", "sol"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"\"\<S\>\"", "[", "t", "]"}]}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}], ",",
RowBox[{"Mesh", "\[Rule]", "10"}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"Darker", "@", "Blue"}]}]}], "]"}]}], " ",
RowBox[{"(*", " ",
RowBox[{"For", " ",
RowBox[{"S", "[", "t", "]"}], " ", "versus", " ", "t"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"plot1a", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"a", "[", "t", "]"}], "=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"s", "[", "t", "]"}], "/.", "sol"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "\"\<Density\>\""}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}], ",",
RowBox[{"Mesh", "\[Rule]", "10"}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"Darker", "@", "Blue"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Gray", ",", "Dotted"}], "]"}]}]}], "]"}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"For", " ",
RowBox[{"S", "[", "t", "]"}], " ", "versus", " ", "t"}], " ", "*)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot2", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"b", "[", "t", "]"}], "=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"i", "[", "t", "]"}], "/.", "sol"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"\"\<I\>\"", "[", "t", "]"}]}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}], ",",
RowBox[{"Mesh", "\[Rule]", "10"}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"Darker", "@", "Red"}]}]}], "]"}]}], " ",
RowBox[{"(*", " ",
RowBox[{"For", " ",
RowBox[{"I", "[", "t", "]"}], " ", "versus", " ", "t"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"plot2a", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"b", "[", "t", "]"}], "=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"i", "[", "t", "]"}], "/.", "sol"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "\"\<Density\>\""}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}], ",",
RowBox[{"Mesh", "\[Rule]", "10"}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"Darker", "@", "Red"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Gray", ",", "Dotted"}], "]"}]}]}], "]"}]}], " ", ";"}],
"\[IndentingNewLine]", "\n"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot3", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"c", "[", "t", "]"}], "=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"r", "[", "t", "]"}], "/.", "sol"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"\"\<R\>\"", "[", "t", "]"}]}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}], ",",
RowBox[{"Mesh", "\[Rule]", "10"}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"Darker", "@", "Green"}]}]}], "]"}]}], " ",
RowBox[{"(*", " ",
RowBox[{"For", " ",
RowBox[{"R", "[", "t", "]"}], " ", "versus", " ", "t"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"plot3a", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"c", "[", "t", "]"}], "=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"r", "[", "t", "]"}], "/.", "sol"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "\"\<Density\>\""}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}], ",",
RowBox[{"Mesh", "\[Rule]", "10"}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"Darker", "@", "Green"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Gray", ",", "Dotted"}], "]"}]}]}], "]"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ShowLegend", "[",
RowBox[{
RowBox[{"Show", "[",
RowBox[{"plot1a", " ", ",", "plot2a", ",", "plot3a"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Blue", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}],
"]"}], ",", "\"\<S(t)\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}],
"]"}], ",", "\"\<I(t)\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}],
"]"}], ",", "\"\<R(t)\>\""}], "}"}]}], "}"}], ",",
RowBox[{"LegendShadow", "\[Rule]", "None"}], ",",
RowBox[{"LegendSpacing", "\[Rule]", "0"}], ",",
RowBox[{"LegendSize", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0.5", ",", "0.5"}], "}"}]}]}], "}"}]}], "]"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plotall", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"s", "[", "t", "]"}], "/.", "sol"}], "]"}], ",",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"i", "[", "t", "]"}], "/.", "sol"}], "]"}], ",",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"r", "[", "t", "]"}], "/.", "sol"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "tf"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.05"}], ",", "1.1"}], "}"}]}], "}"}]}], ",",
RowBox[{"PlotLegend", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<S(t)\>\"", ",", "\"\<I(t)\>\"", ",", "\"\<R(t)\>\""}],
"}"}]}], ",", " ",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Thick", ",", "Blue"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Thick", ",", "Red"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Thick", ",", "Green"}], "}"}]}], "}"}]}], ",",
RowBox[{"LegendShadow", "\[Rule]", "None"}], ",",
RowBox[{"LegendSpacing", "\[Rule]", "0"}], ",",
RowBox[{"LegendPosition", "\[Rule]",
RowBox[{"{",
RowBox[{"0.2", ",", "0"}], "}"}]}], ",",
RowBox[{"LegendSize", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0.2", ",", "0.3"}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Gray", ",", "Dotted"}], "]"}]}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"\<Density \>\"", ",", "\"\<\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\"\<time \>\"", "[", "t", "]"}], ",", "\"\<\>\""}],
"}"}]}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]"}], "\n",
RowBox[{
RowBox[{"(*",
RowBox[{"plotP", "=",
RowBox[{
RowBox[{
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x1", "[", "t", "]"}], ",",
RowBox[{"x2", "[", "t", "]"}]}], "}"}], "/.", "sol"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"S", "[", "t", "]"}], ",",
RowBox[{"\"\<E\>\"", "[", "t", "]"}]}], "}"}]}]}], "]"}],
"\[IndentingNewLine]", "plotQ"}], "=",
RowBox[{
RowBox[{
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x2", "[", "t", "]"}], ",",
RowBox[{"x3", "[", "t", "]"}]}], "}"}], "/.", "sol"}], "]"}],
",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"\"\<E\>\"", "[", "t", "]"}], ",",
RowBox[{"\"\<I\>\"", "[", "t", "]"}]}], "}"}]}]}], "]"}], "\n",
"plotR"}], "=",
RowBox[{
RowBox[{
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x1", "[", "t", "]"}], ",",
RowBox[{"x3", "[", "t", "]"}]}], "}"}], "/.", "sol"}], "]"}],
",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"S", "[", "t", "]"}], ",",
RowBox[{"\"\<I\>\"", "[", "t", "]"}]}], "}"}]}]}], "]"}],
"\[IndentingNewLine]",
RowBox[{"h1", "[", "t_", "]"}]}], ":=",
RowBox[{
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"x1", "[", "t", "]"}], "/.", "sol"}], "]"}], "\n",
RowBox[{"h2", "[", "t_", "]"}]}], ":=",
RowBox[{
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"x2", "[", "t", "]"}], "/.", "sol"}], "]"}],
"\[IndentingNewLine]",
RowBox[{"h3", "[", "t_", "]"}]}], ":=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"x3", "[", "t", "]"}], "/.", "sol"}], "]"}]}]}]}]}]}]}],
"*)"}]}]}], "Input",
CellChangeTimes->{{3.5638355904558997`*^9, 3.563835704468421*^9}, {
3.563835950077469*^9, 3.56383606512805*^9}, {3.56383613822723*^9,
3.563836367357336*^9}, {3.563836441114555*^9, 3.563836444201731*^9}, {
3.563836535058928*^9, 3.563836589524043*^9}, {3.5638366644783306`*^9,
3.563836665858409*^9}, 3.563836695909128*^9, {3.563836848841875*^9,
3.5638368525680885`*^9}, {3.5638372255084195`*^9, 3.563837265661716*^9}, {
3.5638383151507435`*^9, 3.5638383180759106`*^9}, 3.563838362903475*^9, {
3.5638384377487555`*^9, 3.563838575206618*^9}, {3.5638386112096767`*^9,
3.563838657701336*^9}, 3.5638386889021206`*^9, {3.5638388049467583`*^9,
3.5638388069938755`*^9}, {3.5638388495773106`*^9,
3.5638389667440124`*^9}, {3.563839052506918*^9, 3.563839071571008*^9}, {
3.563839147339342*^9, 3.563839232596218*^9}, {3.563839314060878*^9,
3.56383942477421*^9}, {3.5638394696337757`*^9, 3.563839480051372*^9}, {
3.5638395362795877`*^9, 3.5638395453271055`*^9}, {3.5638395986821575`*^9,
3.5638396665290375`*^9}, {3.563839704558213*^9, 3.5638397404972687`*^9}, {
3.5638398239280405`*^9, 3.5638399312031765`*^9}, {3.563840014577945*^9,
3.5638400676949835`*^9}, {3.5638401105414343`*^9,
3.5638401221330967`*^9}, {3.5638401613373394`*^9, 3.563840168990777*^9}, {
3.5638402066729326`*^9, 3.5638402331264453`*^9}, {3.563840302771429*^9,
3.563840436440074*^9}, {3.563840514500539*^9, 3.563840531504512*^9}, {
3.5638405784992*^9, 3.5638405821144066`*^9}, {3.563840618338478*^9,
3.5638406387506456`*^9}, {3.5638407249235744`*^9,
3.5638408190029554`*^9}, {3.563840856229085*^9, 3.5638408646885686`*^9}, {
3.5638410103198986`*^9, 3.5638410835630875`*^9}, {3.563904889849905*^9,
3.5639048947221837`*^9}, 3.563905146271571*^9, {3.563905177983385*^9,
3.56390518226363*^9}, {3.56390525411874*^9, 3.563905299470334*^9}, {
3.563905472683241*^9, 3.563905489465201*^9}, {3.563905647569244*^9,
3.5639056597809424`*^9}, 3.563905703646451*^9, {3.563905742419669*^9,
3.5639057793877835`*^9}, {3.563905869972965*^9, 3.563905882011653*^9}, {
3.563905928065287*^9, 3.5639059436801805`*^9}, {3.563906210805459*^9,
3.563906215908751*^9}, {3.563906296232345*^9, 3.5639063025807085`*^9}, {
3.563906365490307*^9, 3.5639063658563275`*^9}, {3.563906424897704*^9,
3.563906433242182*^9}, {3.563906471104347*^9, 3.5639064759836264`*^9}, {
3.5639065288356495`*^9, 3.563906529453685*^9}, {3.5639068329810457`*^9,
3.5639068636147976`*^9}, {3.563906895527623*^9, 3.563906897037709*^9}, {
3.563907110560922*^9, 3.5639071121890154`*^9}, {3.563907274969326*^9,
3.56390743274035*^9}, {3.5639074760618277`*^9, 3.5639074793070135`*^9}, {
3.5639075838239913`*^9, 3.5639075917484446`*^9}, {3.5639076912791376`*^9,
3.563907827329919*^9}, {3.56390786003179*^9, 3.56390792333441*^9}, {
3.563908035557829*^9, 3.5639080787833014`*^9}, 3.5639084082481456`*^9, {
3.563908463246291*^9, 3.563908492127943*^9}, 3.563908626086605*^9, {
3.563908825166992*^9, 3.5639088270190983`*^9}, {3.563909238651642*^9,
3.563909240037721*^9}, {3.563909322232423*^9, 3.5639093344691224`*^9}, {
3.563909382587875*^9, 3.563909606090658*^9}, {3.5639097046552963`*^9,
3.563909707405453*^9}, {3.5639097449105988`*^9, 3.563909747819765*^9}, {
3.5639097912782507`*^9, 3.5639098366698465`*^9}, {3.5639098902499113`*^9,
3.563909890652934*^9}, {3.563909925842947*^9, 3.563909927602048*^9}, {
3.5639099589818425`*^9, 3.563909959344863*^9}, {3.5639099995731645`*^9,
3.563910046916872*^9}, {3.563910148071658*^9, 3.5639101691978664`*^9},
3.5639102340005727`*^9, {3.5639102721207533`*^9, 3.563910351650302*^9}, {
3.563910421532299*^9, 3.563910510495387*^9}, {3.5639105664275866`*^9,
3.5639105760811386`*^9}, {3.5639106580418262`*^9,
3.5639106824562225`*^9}, {3.5639107247046394`*^9, 3.563910728398851*^9}, {
3.563910840744276*^9, 3.563910862496521*^9}, {3.563910926792198*^9,
3.5639109604401226`*^9}, {3.563911036075449*^9, 3.563911037511531*^9}, {
3.563911431340057*^9, 3.563911437320399*^9}, {3.5639114789257784`*^9,
3.563911493954638*^9}, {3.563911525254428*^9, 3.5639115374281244`*^9}, {
3.5639115750762777`*^9, 3.5639115880030174`*^9}, 3.5639116582250338`*^9, {
3.5639116984503345`*^9, 3.56391176008786*^9}, {3.5639119457344785`*^9,
3.563911983828657*^9}, {3.5639125210403843`*^9, 3.5639125490409856`*^9}, {
3.5639125979987855`*^9, 3.5639126611083956`*^9}, {3.5639128670021715`*^9,
3.563912872138466*^9}, {3.5639130702837987`*^9, 3.5639131278820934`*^9}, {
3.5639132526262283`*^9, 3.563913434192613*^9}, {3.5639134979902625`*^9,
3.5639135222086477`*^9}, {3.563913559982808*^9, 3.563913587937407*^9}, {
3.563913643129564*^9, 3.5639136454726977`*^9}, {3.563913893811902*^9,
3.5639139485590334`*^9}, {3.5639139840870657`*^9, 3.563914064888687*^9}, {
3.5639141429901543`*^9, 3.5639142000144157`*^9}, {3.563914269810408*^9,
3.5639142840542226`*^9}, {3.5639143487949257`*^9, 3.563914404738125*^9},
3.563914455294017*^9, {3.56391451899066*^9, 3.5639146165662413`*^9}, {
3.5639146469249773`*^9, 3.56391465099021*^9}, {3.563914684638135*^9,
3.5639146860572157`*^9}, {3.56391471638395*^9, 3.5639148044359865`*^9}, {
3.5639148449423037`*^9, 3.5639148622662945`*^9}, {3.5639150099297404`*^9,
3.563915010347764*^9}, {3.5639151494727216`*^9, 3.5639152487053976`*^9}, {
3.563915326603853*^9, 3.563915346531993*^9}, {3.5639157813918657`*^9,
3.563915788211255*^9}, {3.5639160749616566`*^9, 3.563916084421198*^9}, {
3.563916863145738*^9, 3.563916867956013*^9}, {3.563916974604113*^9,
3.563916998251466*^9}, {3.5639170471642637`*^9, 3.5639170731837516`*^9}, {
3.563917169124239*^9, 3.5639171692732477`*^9}, {3.563917225221448*^9,
3.563917281815685*^9}, {3.5639173866606817`*^9, 3.56391743454642*^9},
3.5639174785899396`*^9, {3.563917530621916*^9, 3.563917555013311*^9}, {
3.563917726810137*^9, 3.5639177280732093`*^9}, {3.563917953474101*^9,
3.5639180072371764`*^9}, {3.563918038582969*^9, 3.5639180432792377`*^9}, {
3.563918079533312*^9, 3.5639182234085407`*^9}, {3.563918264612898*^9,
3.563918265321938*^9}, {3.563918306125272*^9, 3.5639183204030886`*^9}, {
3.5639183512768545`*^9, 3.563918397598504*^9}, {3.5639186015911713`*^9,
3.5639186261025734`*^9}, {3.5639188701865344`*^9, 3.563918974285488*^9}, {
3.564081080539436*^9, 3.5640811343645144`*^9}, {3.564880574348827*^9,
3.5648805849744344`*^9}, {3.5648807151418796`*^9, 3.564880717960041*^9}, {
3.5648808318375545`*^9, 3.564880834966733*^9}, {3.564880887672748*^9,
3.5648809435619445`*^9}, {3.564881002612322*^9, 3.5648810078276205`*^9}, {
3.564881058793535*^9, 3.5648810605646367`*^9}, {3.564882586727928*^9,
3.56488258833002*^9}, {3.5648826193637953`*^9, 3.564882626198186*^9},
3.5648828797036858`*^9, {3.56564819568624*^9, 3.565648236749589*^9}, {
3.5656482701985025`*^9, 3.5656483646979074`*^9}, {3.565648398269828*^9,
3.5656485926029425`*^9}, {3.5657198291658273`*^9, 3.565719836679257*^9}, {
3.5657199970814314`*^9, 3.5657200092301264`*^9}}],
Cell[BoxData["0.95`"], "Output",
CellChangeTimes->{
3.5656482391777277`*^9, {3.5656482762828503`*^9, 3.5656483654439497`*^9}, {
3.5656483987248535`*^9, 3.565648463977586*^9}, {3.5656484954793873`*^9,
3.565648593639002*^9}, 3.5657198376133103`*^9, 3.5657200115412583`*^9}],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJwNV3k0Vm8QtkdEKVJJQkL6rAmpmUIkO/EhQmWXvSJrWUOEUKn8ZK8sSYVK
lha0aY82Jcv9vu9eKUsKv/vHPe+ZM2fOPPPOc+d5Z61nkO1BHi4uLh5u+qNP
uazZyxdl2rYlqq0JevKEDWZ3F1gOec9DydVLQpBKwNNFOkJ8roux0LhcZu1m
FuzIMr5fYSWF6Vq8hwx2s+Gg2swijUWyWLCkJKZ0AwcslA/+lDRRwJ7H3Btm
+jhw/XVMRJeuEq5Wqlc4bEHCFnGVWr44Vayun92dV0aC99+cC2VMddS+4m61
a5CEoIfDWrUWmhijVThWt5iCk84C62YDtHF50TJ5ax0K9j865qXho4Nf8nfk
utlS0LZghY2/ky5Wls0V/PWhQGNJfP5ouD6+WvXRmBlDgfuvraqWAQboFJz3
wzSTgv8uPpCeytyGr+ZktrHPU9BwSr//pS2i0vEX1fKVFIQ3b7W+YL4d76SL
NkzUU9DaXTae5rID8xapRKq3UOBronfXl2mIqhKDH2raKSiq1Gj09zPCqw0p
cw+6KDj9625C8BFjfCWhlvzhOQVD1RGHfUJ3opERcebdawo6d+YUHj9ugq0l
ix5d/EABt1Xft6x4U9Tq2RKe/YkCru03uYsjd+H+nCgGzwAFqcunLF6mmGH3
uY4u+0EKgp33t0+d2I2VR7j0lw9TMJCgfQDOmOOCvDabtlEKluWe7Uv7zwLb
vpueXMamoHyxSuSj85aYEd26mJ+k7yt0jfH6K1Y45vVjeIii4KJssfRWe2us
lkoIjfxJwd3oGS6fF9boojda+nGcgrW7F/yTd7TB7JKnjTq/KbjxXDn9w2sb
tDoplc2coCDj4Zy6rKstElHNZaGTFOSGjfq5f7TFT6sZy/dNURAtISMm52SH
DpFWRurTFFQp83eHf7VDFRvf0H+0LfCbe0Wbmz1OAtlX8YeCCvX62IvD9gh1
paOWMxQoe1ZbzgbuQStFq7kB2u7f1XR9D2sPTpnZlLj+peDl5aiNEOaAEo/9
fN7S9nSDjYHcuAMmShuSW/5RMH87tDH5kCNOrFX+d4a2d6vvNI6ecESPIF5Z
krYfuar5+ocx8eQ9DRPdWQpq6oKn5ueZuMj3R+dx2u4+3R8y4k2B0QrzzyDI
AtnZW0WzOoJYE9hpMnOTgNRndwf3OCzD9Rumazd1sEBgSprk2ySN6eJV7U4d
bHC6WjsvryKHc9t2eDmmc4ArLkRrDBRxU3BYlsQKEg7/shMfdlFBlLu2eWcM
CYl8ShPrCxkokyKoYvqIBJb7XR8VOw1UvKwm9PUvCdGLj6g6uGqhMeO8bJkC
BZOL24wL/Dahr4funJgxBTne3S7P3Ddjo1dhsJYbBZEZT8JUvPXQufPZx8th
FJjy7Bs4H7wFRVkiMqVJFOgvsK5rbGLitLVBlhtdb5f+iSa29xf4IhT4mbeR
Bd84nzyOTvAizx7bqo9ZBKiQfyavOoljXvD7scpoFigYajg67FiJ655PmGmn
seEL53Vy9aq1aJF+w7DClQOK9v45JwzXYYoVzwa3vxxYNjhiyDRTxuZpwQ5f
LxLchZVt89M34rTm3bplt0hQZijxjrxRx9OCD7Iixuj78VerO/5GE1/X9jyY
WUnB/cb9m7pZ2mjz6sPNga0URC2XH4gb1MF8Lfv3AUwKVneHfjP7qotDJt36
wYcouJNGtbSP66OO3DbMS6Ag/nprRnY+E/urfGp30/VKdUQZcjKnQK801cj8
CgGuIjnvjh8VwZmPcifP/CRgpFowqWG9DBrEpDLi/rDhld/Joxd05VEzou03
dyMHPlQdeb3XYD0aeQxb7dMm4T1P69eIwA3YbWh9zTCHhKpZxcKmUjUsvfRr
2OotCddybZ8FvNDAmztN4s4KUPDb5eurvo9MdCo6QQTTeB5nvDSd8H4OY+Gh
cFGDDUZDwZ2Nr7mRf02BjXYKAf9ml8czXZZgMP+F0XwnFmj5tgjPm65AUbel
sdf82FByyrs7ME8WueTGz2gbc6B528h2iwcK2JAa/TKJxYH9exs+Zrcp4aGN
kud1nEl4dqoq3oJ/I640mmXG15DwOM/1xc4CdbS23v74KEHCeKHweOFpTZx6
FHqDkKBgneCma/uvauNk2b3n6/QpOBT0/DKzXAdjq99MHdpDATXyYEV/kS5G
F2da3fOn4PDTzcpvG/RRKKGWOhZHgULq1MxsIhNt9c6J7KDrnTPWvjdW/Ase
7/Gy3tVLwD2+dfr3HRdia5Ygb9hLAqZe5OjtZazGs01PHDmf2ZAvvPqOe70c
7i2q3FZZzIGAvN8nFO8p4orkNW5860lYfywtsmZQBedAMH02hQTJhIqHwTJq
eODPtnzqGQnmMynne05rICXdQNhwU1CgIbXDtIeJc+Kbn3rTeAoKLL2pzGHo
PhonKWHHgoQJs3l9SQFU1JfZZFdMgAa2PR6N+gtKFRn5jbkE2CRXHgwkmSj0
MH84ko5/qB7iLeDTCpk9qtJrj7Eh3LM5wr6TC5fqWgx5JBMwyF9hxPi4GCUn
Vbq2m7JAP5rLy+6JFIY83rd3iQsb+L6oBzy3pvvnrHYjW5cDfDfKV2gmK2B/
ViHp8J0DJwullDfGKKHXItfUETt6XrwYXa7cror3ry7NlagmQcp0WmfyiDrq
igWkeA+TUFf7R7w0SBNTbDzX2y2lgFm/2rcuQxt9V1hs36ZLgc/5dfzGKToY
Mx8oO2pH+48GbZI/posX70hJ7vOjwJ7q/7IvTx9z/fTS/WPpeRO69Lp2NBPd
WcjYStcbuuD0sdDqn+BRGSkaSRBAxR9iuZkIodbe5eLqnQTMfX+XW1cvjRNC
Hu2GvWyYdhlybQ+Uw04FynVNPgduCjW4CMcpovIpk+E1siRY3iIfmBWrYMQd
1YC64yQ8bR92Ne9n4KXt4XMKPSQUXZPjORaqga/MMj0uzpHgI639J7adicUP
HTT303hiVwp+Gy/+Dl8nbmuOx7Pgekhe3Qd+fnQl+kv0Cggo5ZZJ9k/8Ayk9
XbZ9FwiQC+mULv3BxHyxRYERdHw+Ttb8ynwHg7OXl7RSLFjqt37p8h88+OGN
qXLoSQLSE99xBRVMgF9U9DWHOwTULTvDZkWxwMShc/6fCgusI7ktixQXYFaC
x+RUNc3n2APCPiGzIEQlDRdkEBB/PqNGZ4qJL5zVnGPpfG1Ha0qVfGphxHdC
f7SEDRmy+57JG3DhTpFT8pM0X96nkYpnixZjloovTzWw4B6/fO5sphTyUopf
N9qxQTtFYiuXmizeVDlcL6/JgUoyKanUSwHF1KucGF84cFFnt9VfZyW0j80c
a7Cm5+3PtO/5xaqoecWg610FCff/MyYsfNTRPG6DWN8PEha3BF+uctPEh+NK
B3nFKfjJL/7obbQ2qggtFjDdTIFX/YtNLUd0cK3YSIgCzRcRNDI08dNFP4+m
r9d8KdjBxWgpTdTH+oU2xt/o95ebz3+LXhxhYoFAb4s+Xa+qDzhr1Y7BHdFb
tzumCRCEpUaMVkG0vJSkH3KXgOOBM/edw6TxtcqrJw7dbFDi62H82i2HgheS
nTqyOeBilPMoZp8iNsWcSb4kTYLnnrVsqVgVrD07xj0fR0Ll9xTl5iYGHgvR
+q7bRYLRguDGl54aWLdbMxdnSehd0m6/8h4TK5p7B9xpPD/7D1wKrx6A3LwS
k43nWNCtpidUFcOH5r1Fptb0/+3m+eSAato0mL8N41pXSvffy/YoDDDRcHOX
ahgdH9NRqzxV/AocRZIt2sXYoKr0xH9oLw8q71rzIo1+Pxv9SPqiVvQb5qPV
eyweEqDw9mdVYOIozBiIazhuY4HP5vJy/4sC6Hvm28YjZQQc/SJOKB3+B0rP
Vst203o7kr1y4ctxJo6ZfV0bTefbWyqxOsmcG02fCidH0vy4Xf6tqL5sHJqi
JATtPxGw0OmKQkjBD6jo26pt5MuCcw2U48JT/Bh9xoU75zwBRHFQRXXcDPxI
833uWUjAzJXjzSaBvNhtPl/8g+bnS3lluZqcScgs7yhwaiCAT+amakXAHCR7
YKckzf/l5XO25/8yUbQrKTuexnNLUHlNoM8lCOHl8sy/xQaNec8JybF5MA/e
fOgErVcvd4sXPotejETqQN7+LSyIN7tR9fKQFE4+EB7QsWKDeX9KmZSMLPb5
B+wbYnBgJj2i5ZODAp7TrLol8Ynmc9IBz2+7lPAYZ7WWpBWtV9zOXU+zVNGO
ZdV+s5yEPEt2R6S7Og6uei8lTvP3Pl71V3XQxPD31xKcl1CwTV1kcjRcG1lC
T3c9ofeHAwaKlpNBOpi0sbOyjd4fhi4zzD546OK7bOKzPc3fZsF3So+i9VHd
5tPeCzR/xff7tFyIYGJ94KMEPbre1ML8rlyNMXAUCP7kzMWCZRcPjkkcE8S3
oqFRqs10v6+nv1Ozl8b1z8d29T1kAzK3FghvkcPjk9buYqc4UDOQMHvTShFz
b95v7V9JQkCp/vx8gAp+6ow6eTmW1qvfjmI/Kxmo4Gqyavtjep7fkMyac9bA
z2yF8ux/JCSLpPGMtDDxLqPr9j4azxWDpbGbar8C+Tlc/0AFC96eSm/M1uPD
+Ffv7VJOE9CSI/86Q3ga+orXHS2qIAA9Vigu+sJEx9Yh4VA6fixRZPhodS9U
rL3HCJdlg26KjNQzKR4cyXyg94Tu338SnyyzZX6DbNgFZnUPAZ91ilMZaSPg
svDam1Rav8Lzp23tnAVQwXhQ70MJAa/F/JzSpv/C/OmwDZV0/qL0gVuXxpho
93uG7xidz4fXpytAkBs/Xy1+wKT5K/FOT0RcaRx6f8ZktX8noLPJiVezaBDK
zESPEOEsKBffwTe+ix8zzIMcmGcJMOl9KCnMMwPXmz7d46P5LCD8xktNmRef
torPnksngGEff1pUYhI6b8mlNN0iwMNyUdECahZMfE7VbKf9T4ofcPn+YSIn
9WxEHI0nvk1EziCeC0su6M2dofFwa0ZM9Aj8gdQ7e2sGab2X7YpsnSvmQVHX
tasD0ghYVdsS9fjXP0hWadi/8hQB1sYdwReyubHAz2tJBx1PmquLutfzYlpD
moIN7a/guN3dScwBJ3uVtiQd73llc9nTWSZe2vO7OoHOf/tfbkU6YwdqlNos
q2yiYKu9RiajeSd6vGnesvItBe1XnoX2Gu9GTtbSlb5DFJjwBjDDe62w7W5K
p/wYPY+v8V1KZ9ii0eEIfXF6/1JyerXENdweLZcbbWmn9ymCrySR0eyAMiu7
lcXofaf0PdWXzpDDTZbEY5EMDniZcU70Gm/BjhUV6TsS6fly/vrtdIYmBl19
fpMhSsH/96rRTw==
"], {{{}, {},
{RGBColor[0, 0, 1], LineBox[CompressedData["
1:eJwl0mO4EAYUBuCbW64t825hLduuZd1qWTfbtt1Wy9aW27Jt27Zt996nH+/5
/n7POScwuE1Q61ABAQGhjZDczWQ6U4PrrGYshbnMckbzgC205xbrGE8WTrGA
QdxnM824yVrG8YQdVOQqK3nBXzxiGx25wwZeMZGn7ORtSG/2MIXndOEem3hN
TW6whpf8zWO284YiXGEFf/KQrXTgNuuZQFZOs5DBNCeIMOxlKl2pRVGyEZZ9
TKMbtSlGds6wiCG0oBLh2M90ulOH38lByHHOisUMpSWVCc8BZtCDuhQnJ+dY
wjBaUYUIHGQmPalHCXJxnqUMpzV/EJFDzKIX9SlJbi6wjBG0oSo/cJjZ9CaY
UuThIv8xkrZUC/j+d5HkEebQhwaUJi+ROcpc+tKQMuQjCseYRz8aUZb8ROU4
/9CfxpSjANE4wb8MoAnlQ1asS0EZnRjEJBbv+ZGfiE0c4vKBeMQnAQn5SCIS
k4SkJOMTgfzMLyTnMylISSp+JTVf+I00pCUdX0lPBjKSiZPMZyBNqUAhLvE/
o2hHda6xijF04i4bmcQzdvGOzHwDnHGBPQ==
"]]}}, {
{RGBColor[0, 0,
NCache[
Rational[2, 3], 0.6666666666666666]],
PointBox[{249, 250, 251, 252, 253, 254, 255, 256, 257, 258}]}, {}, {}}}],
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox[
RowBox[{"\"S\"", "(", "t", ")"}], TraditionalForm]},
AxesOrigin->{0, 0.8300000000000001},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.5656482391777277`*^9, {3.5656482762828503`*^9, 3.5656483654439497`*^9}, {
3.5656483987248535`*^9, 3.565648463977586*^9}, {3.5656484954793873`*^9,
3.565648593639002*^9}, 3.5657198376133103`*^9, 3.56572001156626*^9}],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJwVlPk7FAobQOlaS4XEYIqGhGsbJAnvi0ZFlH1kybVnzz6WsmUnIUuyZN+y
ptAtS1IRSVQiEkkpWYpUY777/XCe8w+c5+yz9zZ22sLExNTzH/836TK9pGBv
l+bGRoRQbm4b6N1jN5xzYcD1O+18RlmNMLBdhZPFhhsznq4ZlraWg/ZlSmfF
KQKeTbI5s5O1CJzkf20nbxfFZ7wOl77x54CBlNMy/zFxnDVokzW8kg5NI+EB
T1Ql0eLJgw92AqlwhFe6nuWiDG5sXlPekhYPLr/T88uoCjjZNVb1LTwGvHs/
KtUbKGJAqPnyrehISDzDtp/uoYwqmR8ntr4OB4dHoc5kVxWcIbrTlWZp0MUu
aORuqYoTzH/s9SsCgcwTkfXJXw2TLyg4ijT7gd2qhoyhhzr6VF+YZFifhxsF
D4nrKZqoUuPLYeHsBc2pauPDxoiybAcLIx64gX+7xun8k1oovFDOJPbCBTr6
ylYSrLSRzSPq/FMuJzh37PC9c1QdLBPfljnwxB6uV5Jb3N2O4oOR7xKkUju4
snov0ieIgmYh/5bZZtvAXHVAoKuvLmp67VwippyBHt30nKioY2j7ro9ws9gC
mE+9eX854jj6OAQV2x42Ayat28xFtBN4Y2Ii1XuPCcQLrBsMx+nho7wfXwZ3
GYHPGYfu9Wh9HLb53cvdYwjTkcqOcPUkjt1tTPEP1we+jNw3CTcMsJJ3gD5T
dBzKuaVpj/IM8fGugkgtDV3o8hWhHKg5he8FPbvUF3SgQLSIqGF6GrczrPYV
/tKCe2G/mFyHTmMikcfiwFGEffrsf8QsjPD3jHJsMFkDbj2TShobMUKuNRQj
OqlBcu+mgqiNMRIrpzrSag5Bht8nN7sJY8xsjtattT8IYbv37iRZmuDiXv3H
O2yUoEqKtc//nQkalzkyKhzIwPadWbDL1hSjVAnuAYHyUKHQeKHgoykq08JT
P6jJgJR9tSHd0wyr2lxVpOylYPxEW5PZghlWqhbG0OgSMFwSIgt+5jj0fnVw
vFwcfjYbqZNWzPHo3Mq11HoSMFp9W2K9LLCBTT+Ec1kU9BV0KWE/LFCDtUPp
RdBeeGQjf87dj4p2i/y2R3KEoa7BZ53BoGIufW7yUAsB+q6Mn593+QYR7Yol
hiktIEq/c52uwoGlFVLHycK1ED94b9bMnA9ntNnIPF+LgW2duMhykIi0EhZn
ibw8sKytZ4hJk/AmfrIHzqvAdPG80hJIoKhuiftUZRoErprwfrSSxm4tquks
MQliWCR/HMiRQxYXzoFgx1hYsLvnKm1CRo0BgfDehSgI4w6SMbdRQtXSBfLA
/ghY4+6iZLsdxD/RdqPevaGQ7tJnNWh3CD3tb0v9VAoGNfbTDS1tVDSx0+/0
JwrBE7Xoti8uU9DzoTUys+QOvP/69p/gH3+hg/jGP2Lu9SC9uLFWa8mLbUkL
C0uNpSCuQ7Yw1xZCVHs+n9eQD1NfR2Krhffh2luOMbeQLJAwdU+P1tmP8poT
LiHpV4Bvdl6HqieFRxxv6vUnJoPdNinjrCRZNBGR8bvvEwdScpJ/zY8qoG1T
pI5UfTQEuss3RI0qYq4Hi+/0swjobHE42LegjBH5BY5fHodBiIDY9MVZFQw0
5NKxY6dBRFNHcloWFWv2xa03vxICwoMQna8p6+DhoO/1IaIZbLjSX0UFc+GR
2JetrqpV8KEucnjTmB//vAvkHbW7AfPVHJeaD+xFnX+UdzJ35sILt8TgfFUx
tCUETWndy4CxqqARa/UD2MHMublRchleb+l4F+D5N2atjeyg9CXAd6t3L95M
UPFs3IqXhbMgPE4ePv7D5RkY3NCtECpvhaNzPj0tI8wYLDvW+6GgAf7QBSKo
VjxI2VJ/0b+2DJTO3d3GOC6I0aV8FPmRAihOdenzzBTFhNELiS+0s6Fdc17L
4KE4HqgOIfPsTAcH6+aJtC5JzKg2OcZikAKDqVURBqyyuMqecHCaHgePM22G
dLMVsPOiZhf37hhYydm2knNFEXWXc+tiJSNhP8fBmw61yni1cF//mGE4eHk/
K6GWq6Az7/eWDH8aiMev/6LHULGAK1705CFh2KQo318qWoWzfbcatsTcgvss
+9U6LbZiBG/s5Zbr1XD7fqFVtelu3PXmxrqLaDGsD6UftpbbgyW0jlej5dcg
a9uef+0aSXjsHqVnxTYTPDK/R0vcl8Bbv3gpR46kwYHQBFrdrDRyO2uq2vgk
QjaZoH28n4qHiOp7ejoFIfKHHkONnw13yYaLbG+5CZaT457M1F3oEZ7y99Sj
EjCKrXTyXPyvZ90/CtLbBaFX4bwLm2sHhNDYlIDUBv727QGmPUyYbj1i9I7Q
CLOsFUflJrhxcaTttbZCOaiFMTmbPCVgzN+6Pj0ehcAypeDx7LQoarXWi1vX
ZAPLrXJBxVhxNBz/PON/Kh0ScwhSsuGSeHbnKrtEYwrEDH0SkOqWQUrC7FsD
3XggHP+pshakgDM6yidFTsRAQ/0Gb6m3Ig5+Yd3WbxYJ1MY95xqSlXH/XL40
R0Y4uObtZ6XEqeCxut6tu2tpsOa7q0k5jIqk2twrOS7C4Mt+JdS3ehnOq+V6
7uJogW8RXgu2xziR9nF5LYdaA4W9cqIRo3z40VaOwnmpGDZnXmU0NBIxlD7N
0BDJg59WczbdniTUt7qj87spE25zNlttuyiB0eLTzmHn08DwzuJDvSJp5DeL
5xp4mAiuROWNC91UrHg/U+G3KAhN5zMbxlhZUZfZpCkuuQ6059wUX73mxXqZ
SuavaqVAOt9DLP1ARUGSsnTuYUGIyEuuU1mnYlHlvyuc0wToCq4rlXSth/yW
Rrts2zZIFj07KKbOhE47Tmj+bdEIrxMWJXKvc2Nk/+XqSb9yuM8qlkFPIeBI
42f6aHshKMft1mCSF0XDvsHw7nfZULl46VKpszh+4rDaoeiTDgUq+qd+n5FE
JO02ZMykgN1ywkxWkQwOjnOlbLrFQ+cNymcDVwVMmYja9HKIAe67PiVVtopo
OVbGX+MRCcusvI9ehimj+xdGt1dLODg3Dh28G6SCtk/qKrkf08DW9cb2oSAq
5puziU1dFAYZVzijVL8EloP7etP1WoADdh2V6+BA+oaNAFdbDWTqBW5ZuMqH
J1WHDQtaiyHK81fnGT8iKpItNzus80CSpV9uVZ+EJI6x8JG3mWB1NP1R+FkJ
DGGdJnKmpIG92b4vhAvSKFJ69idpORGe83SbCt2n4uRD841zrELQJ3+Ysyqc
BeUOer5Y+lUHKm5NfNq5vPg8yn/8a0ApJDkbB8M0FUcLBM8snhKE+TShrcMr
VPQxjdXhXieAQPmmcd5vKl6kpcgI9BPgDoeUiKdrIcx4TllSwtqAzLD/wb/E
gG9KxVtKAhthWJ83ZzCMG/PeiywLZ5VDhN6tqmEvAvI/uMVt8r4QTo7HlRH2
iuJ78sRCx+9s+JUUcPetuThuZQqVuBWRDpWXHO3fn5BE8yn+bwX0/37FfObJ
wGUZnJ3M+RYQHg+Zhl8e0OwU8O2FSzJVPjHQibXuMub//Z9CeiAdHAmaClxr
n/yVUauBSrjdGw6O6hKGa94q+Npb3WLPSxrwOrjezQ+gYkqmbOLWZGGIz8l6
kkFeAmK/FPdn9xbgK3Ba2h3KgaOlVaLzn2ogleuan2ggH44nneu8O1wMR5uS
XsmbEtHb2vHsy9A8QKpG9rYjJJzcuJkatJoJddOR9NunJPDzVuXNz9fSwKNU
jcHwkMZZOy6RNbYkiOVK2DJ/l4o5HYynX7iF4GVqUkvaYRYkMYd+GFKsBwWZ
l5eCaLzIw1MxNJhRCviPoMT2KSqyJ/Q6i1oJwvWk6TuFS1TcWpn4UGiLIDwt
esh0boOKOyd9RXa8JIB9zaGyAToV72v1CezvJICz3tfo55Qj+N3+p8fHdl9o
/ZNRkSSnjWveN4x7opxAw5ScIteui16+Xc2qjy2hu2bQ9zlFH5+T1Ufnck/B
sb88qP7PT+Fh7tlPEkU64HyTpTBJzhg/r1fv2MxVBUnLFzw2/qZolMnL6F+V
g88sxTFy7eboUtcudiFFDEpff3uTJEdCVspXlfS/roJ1XlNrkpwirrUNnQhs
iIT/AUKkihw=
"], {{{}, {},
{RGBColor[1, 0, 0],
LineBox[{1, 160, 134, 109, 85, 64, 51, 173, 147, 122, 98, 77, 2, 161,
135, 110, 86, 65, 181, 155, 130, 106, 52, 174, 148, 123, 99, 78, 3,
162, 136, 111, 87, 66, 182, 156, 131, 107, 53, 175, 149, 124, 100, 79,
4, 163, 137, 112, 88, 67, 54, 176, 150, 125, 101, 80, 5, 164, 138, 113,
89, 68, 55, 195, 177, 151, 126, 102, 81, 6, 165, 139, 114, 90, 69, 56,
178, 152, 127, 103, 82, 7, 166, 140, 115, 91, 70, 57, 179, 153, 128,
104, 83, 8, 167, 141, 116, 92, 71, 58, 9, 168, 142, 117, 93, 72, 59,
196, 10, 169, 143, 118, 94, 73, 60, 11, 170, 144, 119, 95, 74, 61, 12,
171, 145, 120, 96, 75, 62, 13, 14, 187, 15, 16, 17, 18, 188, 19, 20,
21, 22, 23, 189, 24, 25, 26, 27, 190, 28, 29, 30, 31, 32, 191, 33, 34,
35, 36, 192, 37, 38, 39, 40, 41, 193, 42, 43, 44, 45, 194, 46, 47, 48,
49, 172, 146, 121, 97, 76, 63, 180, 154, 129, 105, 84, 183, 157, 132,
108, 184, 158, 133, 185, 159, 186, 50}]}}, {
{RGBColor[
NCache[
Rational[2, 3], 0.6666666666666666], 0, 0],
PointBox[{187, 188, 189, 190, 191, 192, 193, 194, 195, 196}]}, {}, {}}}],
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox[
RowBox[{"\"I\"", "(", "t", ")"}], TraditionalForm]},
AxesOrigin->{0, 0},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.5656482391777277`*^9, {3.5656482762828503`*^9, 3.5656483654439497`*^9}, {
3.5656483987248535`*^9, 3.565648463977586*^9}, {3.5656484954793873`*^9,
3.565648593639002*^9}, 3.5657198376133103`*^9, 3.56572001157226*^9}],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJwVl3c4FnwXx5E9SjxZCSHzdhtlPnJOmRGV1W0m886IJCNCZWZlZCSyN9nr
lhAJESoVlcIjKRllpOT1/nX+/F3Xub7f8/n8Dtp7GjvRUFFRsVBTUf1/Cids
5WcLdGpQCZ47RXCM0dB/yGA067INWtO62Y3irTDIpsREa8OO4+7G0wXzrXA8
Qbuj+BQPTmc1TaXkN4CT7CabPJsQ+lalygtlVYOhpNMyl64oMj+jV21kKIXa
l9eu9KlIYEZMUGBPXj78yyH1gDaEgF/0/zhdobsPLr+TsgpJcsjfvKXxQTkD
PJ98PvzAUAH3Gxv5MEjcgVuW9Ie23I9gUJrC7MajRHDoDXSWJyuhXEuB3DHf
eOhk4D3jZqGCFilvjHw8boH83tDULz5qaDDwccx2OALsfhwlGLmr43ZyQbnO
9k3Ize7hX4/TwOb7Io2WbtehLl5tYtQY0dFFVM81Nhh8Wo+ezjp5DFXLnTdS
9gfCo/7ClWir47h3W1nB5pMfXNBVfXiBpIkXxhY1KzSvwL0S+QY3Vy1kbC8v
Wez3hsQfD697+Wnj/BodOFV6wWzZFV+ytw5y76rPmvjkAd06Sek3buii8/N1
p6kEV6A+NT6VEKqH5ry/vN+NugDVsUbqnIATGCyz/ZDX0wmiuNcNRyP1scp5
vsfooAN4WTp0rd80QOngvsFO5fPw6foRR7hzEq33bCvmtdvCP8kZ49G5hsi2
dMYzIMIKitilAnozjfDaa+WOo69J0OktqC1efgrZ4wNfJqqbQ7ZQDv9R09MY
XijkMbDHFB4GbVKRh0/jcgPtjTxRYzhowPBH5OwZFMmV0VTSOQ31zyVj3r48
g5vqSrHyboYQ++SvnJCNMd69KtqYc04fki9/cbV7Z4zzpTqihqO6ELRPYI+w
hQm271m1cbmtDaWSdP0+H03Q4i+jlb21JtD/pObttDXF4r1q39ZuHINiuZrg
7M+mKKUKnOgGIGlfZrTlYYa/uTK+bmiow8SJllqzr2aIyaQ6uRRVGM2/KgOX
zXHhhHaX0S8l2Kg7oy68Yo5CRnkZT54ege1m74aIi2exsbn/V8ZrBTCQ09EO
Wj2L/Tx3uFmW5aDXRvaC22USSlayKHo+IEJVtdf69jYJ59x/t+wLkIb+xIlL
cy6LoBfo7lorVwtCW033tpQYsbK998AdtTaIGno4Y2b+D+qEUz73eTYD/Tr/
d1pFfiw9rnSG/LcWLCoebItICWOsp8v8l54KoAq5dHgJxPCsxbqxMl8R+P4w
4fhsJYVmA9xeDo65EEYrsSqeTkQvsiupfSYTvto9JEuZyCNPfUjm/t1pEMTu
RzC3OYxdjgUmV0jJsMbeqZ3mqohuNZmaju63Icml32rIThk3hFh6xC1iISD2
2WUpF1VsjxXsaoiKAj2ac58yvf7FduXwCAopHNQYTlc3tJDwT3L/+AijDPSp
3Wz55jIJLqkP92WQC2Fq4f15/9VdWN/jRRs9QAGp77/WKiw40K1BZ1dHZwuI
asqfNT/Oh0SVA1VK+vUwufAyomz/QZybUCCZz1WBmKlb0k3NQyg2923/x9Bi
+GdmTpOkL4kC+3v+VPvmgR2LpHFqjAxO3X5cxeyUBZJEiV1zr+RQ959spxbe
dPB1k62+8UoBHw5FxjWqpEBHg4Ni/9cj+HchiyV+byJc5Rb5FDKjhGEr7n28
5+PgQL/3lP5HFfT3p0oXuxINbdGLlK4VNZRxNL+YwB4BobWPYm+nkjAlJDtA
9q0M8Dy+qrkQtw7dVz09mkWbwIY16fUNf1b8+/KaseBrCsyVMYbXiQtg7dZ3
XfruGnjhess/S0UEHYVkumGkDN6W+r20VhdHunKGG6wjBfCG5tHHKx7SGBKu
8/nwhRwo3RJLbymQxXnB33Gnr9+FymTjIfdhefTbnlGx5UyFn1YfX4y/IyHX
QsduggYBnsaO6q26PIfYd6k+g4fTQGvWq7vhJTWajntU+IlT4M8WdyjJai/q
muDl3TatcPgChWVbjxctZgU1olbrIS/epd8jRQiD1J57FNFVQ6vG3DHDHlF0
EbwKfFgCDtZ17253SqCqxlN1M6Z8GIovDTWkk0GLjSRtWvlseJpiM6yTJofN
DUpptkXpsJLOspKeqICsjJZ8zlUpcIhRsdKh4giOvLG/k+CSCBc9n+eTipSw
0jxTduNLHCzO9fBO3FPB0gTP1O7FaPAdVJYcq1NDqr4AOi/PCBCNWt/cCiNh
dYrYyduaRPirfaR9KecHGEfyPKtdrod22kNqHWeZsdV/Q5BNoA3Wh5NUrYkH
sMK0bGDSthZSWQ602dUIo5GVSR3Nk3JwT/l5U6xdDJ8LBQfyexeCeGB0QNWM
FDo7u1Ozz+QA1/XiJ14Csji1LdGWKZsJJzcjMwcS5dHJa96/JT4V0uR5jusN
kHBlRD60P48AaWlGLotxn6GEtYztV2YlXF/V31bjosej6ad6J4XbQB47n365
+hvqPNqzpyea4Q/nto92xm4cC1Y2g4sUOBNR4uTxfed+7D0YuDwuDU/kLrnQ
kx/BydMZ1o8ORYGPfesV024qHJjqDGSvb4UZumIt4jv2nT4b6A8XtoJaEJWz
yTMejJRfotI62QC0k3Luz08LYf8xC7P809VAW1/EqxAhiudSrheM5ZXArXQe
SZlrEhjtpLAhY5YPYcNfuCW7CEgrkl4ldjcbePQ2lNb85DBnzcE95Hs6VD/4
xVHgqYBSbxTiG+ZTgFRz4EJ17BEcJzUMXElOBHLmITrtSCX88ZT/XKVsPJD8
PRVFAlVQg8CSpEK8BaaLE5PnUtSwbkavtOB+BKx5c9YeCSJhzH9BJacCiODN
kBjoXbYMvjcyBEQL6mAx9OJXW10mvC/17IeCQhv8nX6dXF3Dj2Ny2+4cVbWw
YTVr0+UhjIN0CiGxWhXQyFRnxRIihjO3uEiaPYVg1PS9Rz9HClVEODbDRXJh
sOuzzckJIvrRHz5zMjoT7lUK0wR6y+NIjHLr7GAqkPmP/AruIiF/f/6jnFcE
COZjnFrJmYa3n/6eH6zd8ZFLKdVv6ejQg7C+Z3GbAgXUAhFuYb+As0VJoml3
MxBu64nNRLFh+C7Lae8iCghf6uYv+I+EYQbfMuxZCZCKa1U/4l7Dnag/+neb
coDTVZyT+z8aJPc6hf++SYGYsNdUnmmr8FGnQ7xvfyPER01EHSSzoFK8LKPp
znvV/9z59vXqV+Db/BD9NqUaTgdQG90TY0Dq35Su74pt0B7syEK+tAXMY10V
EN8CA2kNj4tK9+Cr7cw1O1kKhGbGVimtk/CN00/2N6XS0OlfVSBBfgDF1bJX
v+X6Q6zQuSERdSq0S9ApFLnUCm+iv4tl3GPHmp6LaR1PW6GdTiR5K44HbScM
Qyb8GuBI5L6jVLJCmL0+/rLGtxpKvoeHFziLouFVsKV+VQLZSganfltK4MxI
nkhnYD7YLUdPp+YQMFR6JjHyeTZ05GrPG5Ll8FmxUSY9ZwawU7zyS20VcLMl
/vlRpjuwTMfROxZ0BPkmNeLySxPBuWZYkeKnhDqjBfITxvHAilqauq4qOH5J
SPOh4S04TkWkFISpoRtKLC41RYAtOZdt2I+E4uKctiYpRCCQwfLwgyWooxzy
ObVYC4zAqUV8xIihjKJCS8ptcMNjs8PyMj+uWQ9n8I7VggTtAPGHgTBKl5dK
fAyrACutpN5r58TQO1eZ8eZiIdibHfzGEyyFTwM/CPdq5kLJdKRkawsRlzcY
PZ41ZoIWg1fDqL08rgUtvJhcSIWRvV2mfO0kJH4u/SyzSIDlCcf7PmWfgGA6
FCB7txj6ZVWZSq/R4q4J+zN0cxSwtX/mSIjeAIGKwLzLWU2gZbQQXEfFhnLn
JJ8/fbSTF2djf/hEwuLOYFA/RIBrjx9Irue8gPqbFvYXPe4BQeKZ26w1DVL3
ltX6kiig9V/4pOy9n+B/S1CbIaYBinRCPy1NMuN8kbL68p42EB1bLvUI+wIe
F7QuffN4AGTloiK3bHoUoBn4pk9sA/9JjnkJ3z/gheQTJ1VaYMbMkt/34B4c
m7gO6ad2eHebj3l0ZSdfaXFvLbqkwbpg34Hwk9TIdYkw0rHUCmNdfUkJz5nw
Dgx+DJNsg7t1i2eZ4+lQ4n3I+SDONpjP8SwuC9mEZ3WMk0/8m2Gz/Earrscu
tBxsZdUso4Bvv5Kc8RILFnBoc5O+UUCFYr36rIoBdwftrt9QbQPuor/Gmb9J
mC8kweaeKA1NjJKCHuT78HV4d/fKRzLIb9uvci1tQ9GJvJhjhq0wasCRPhTE
jga9Dnav3rZCqH596ehFHgy873O4Pq4BTk5EFvIICGFGSiHT++hq2Iy5Qnlv
LopU5rLe+t9LoCTc0X7qxA4Pvaw4FBN2eEht2TeYQMDBQ0rt7vPZkGL07XGA
nRwmP24xIh/KgA6scCOYKyD/UB35Ls8d0JBjXfvis+Mjd/Swrz4RHNXFjNY8
lVDC2Vwk0jEeZvOJ+m/Pq+CHDhq/JJtb0Mr4WqI3SA2JS6NlIt0RwOFApmRd
IaHCJJvWh1wiRKWn9iXLLwEfjTktJNbCjgYt7QtkxLeNfPwlO/vRqo15LWvK
jzGeOTwq87WApKNpLP8KY+HdjMNGhRVQ9en6VuMpMeRJHA8boi0C9wK17W13
KWzKuD3MZJoLXD/P7lkuIeJ+SN/bNJgJPPVcCX8t5VHRKcBsdSsVIlijaeYo
JJzdl0K/9ZsA5eqcwYoPPsLC1Muh+LAiGIuPabitSosXpgO/W49TgJIk8jKW
ZQO+7zCMyb4JTleCdGYbKxod05pu2PFFPM8rxjZJwi3mYrsaeQIshbF+9i8b
Aa6ZpOSa1xmgEinAM8RDg2X2IVplSIHcfe+Nbgv8hLu8SWuXoQFqC0fj3mQy
46LO2etnuNvgg1JOFDF6DmiYDfQeR1aBT+qGsYklPbLFndfdu5PHl3tcLaI3
fkMHA1/0PHMLLNVXPLV5vxtN3tr5C56jwL2YT033l0gorbS6kDckDeRd5D53
Rmq83nSInvCiFaYO8oNfDBO6acklK+/0pYjjOO3KCTrsXZhj12BuA92RJ1ws
NJvA7aBpkqu14/ssr5xlJXchqYFK9HEaBW5IRr9TrWDBaCOhdsG1nb7yPcit
d2XAy4YSCo4qbfAsp4fqwi8Sng1sOns/Sxr+THak6exiwmjDdj7v/9//4Vnr
zk5alA6pZY/+SQGhvoBHf3NoUKd6NXlmxy/ufpZRZBJlQYIiff4SQxtYvzHZ
vDlFjyHVkuNJO3ztd/CbLeZkxt6O8G5B0TaIN80qFx6lQ6EECeXq/W1AsGY+
8d/KTt+sdr+s2fm/2JcrFw5ukdCorIOoES4NzX+Si2OIx7Gc+L4y2dUfjprK
xxFbdbBh+sTXYmoP6Cof8h7RNsBu2oPK7tXnQXeXO8ln5BTu8UoKdJgzA+dK
2vsxRGNkJI8Ic7sagITFi702Pqb4gvfDoqDaMZinzQsjtpqjRdqZrJVHilDw
ZnE8hiiMiwEzZq4PK8BZf+HmiPa/6K37oUI9LRysM2ubY4gKeOrNkF2U/R34
Hyx7oIU=
"], {{{}, {},
{RGBColor[0, 1, 0], LineBox[CompressedData["
1:eJwl0lW0FlUABeCf7k4puYA0SLeogLR0d4vEvXSHCtLSrXSjdHdIgwWCdHe3
gtQ3i4dv9lp7HuactSesRUSN8EihUCiOR5CHmUFPGnCTzUykFFdYxxi6cJft
TCU/p/mFIXzNbbYymepcYwPjeMo+unGfnUwnMkeYSS8e8SsNucUW/mcSz9hP
aa6ynpeM5Ql7eUtX7rGD10zjXw4SXLyAOMMyXjCUx+zhDe24wzZeMYXnHKAG
19nIeLrzgF38SBR+Yxa9aUQZChKV35lNHxrzBYU4y3KG0Z6aROMP5tCXJpSl
MLHc45xcwXA6UIvo/Mlc+tGUchThPCsZQUdqE4O/mEd/mlGeolxgFSMJpw4x
Ocp8BtCcChTjIqsZRQR1g3NyjAUMpAUVKc4l1vADnagXev9vxpZ/s5BvaEkl
SgTvOc4ivqUVlfmEuJxgMd/Rmi8pSTz+YQmDaEMVPiU+J1nKYL6iKrGd5TOZ
gIQkIjGR9UlkUpKRnBTB9vqU8gNSkTrYXJdGpiUdH5I+2FYfJjOQkUzBdrqP
ZGaykJVswUb67DIHOckV7KDLLT8mD3k5xc98T1uq8TmXWctoOlOfG2xiAj14
yG5+4j8OEck38sl3cpSBjg==
"]]}}, {
{RGBColor[0,
NCache[
Rational[2, 3], 0.6666666666666666], 0],
PointBox[{258, 259, 260, 261, 262, 263, 264, 265, 266, 267}]}, {}, {}}}],
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox[
RowBox[{"\"R\"", "(", "t", ")"}], TraditionalForm]},
AxesOrigin->{0, 0},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.5656482391777277`*^9, {3.5656482762828503`*^9, 3.5656483654439497`*^9}, {
3.5656483987248535`*^9, 3.565648463977586*^9}, {3.5656484954793873`*^9,
3.565648593639002*^9}, 3.5657198376133103`*^9, 3.5657200115802603`*^9}],
Cell[BoxData[
GraphicsBox[{InsetBox[
GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJwNV3k0Vm8QtkdEKVJJQkL6rAmpmUIkO/EhQmWXvSJrWUOEUKn8ZK8sSYVK
lha0aY82Jcv9vu9eKUsKv/vHPe+ZM2fOPPPOc+d5Z61nkO1BHi4uLh5u+qNP
uazZyxdl2rYlqq0JevKEDWZ3F1gOec9DydVLQpBKwNNFOkJ8roux0LhcZu1m
FuzIMr5fYSWF6Vq8hwx2s+Gg2swijUWyWLCkJKZ0AwcslA/+lDRRwJ7H3Btm
+jhw/XVMRJeuEq5Wqlc4bEHCFnGVWr44Vayun92dV0aC99+cC2VMddS+4m61
a5CEoIfDWrUWmhijVThWt5iCk84C62YDtHF50TJ5ax0K9j865qXho4Nf8nfk
utlS0LZghY2/ky5Wls0V/PWhQGNJfP5ouD6+WvXRmBlDgfuvraqWAQboFJz3
wzSTgv8uPpCeytyGr+ZktrHPU9BwSr//pS2i0vEX1fKVFIQ3b7W+YL4d76SL
NkzUU9DaXTae5rID8xapRKq3UOBronfXl2mIqhKDH2raKSiq1Gj09zPCqw0p
cw+6KDj9625C8BFjfCWhlvzhOQVD1RGHfUJ3opERcebdawo6d+YUHj9ugq0l
ix5d/EABt1Xft6x4U9Tq2RKe/YkCru03uYsjd+H+nCgGzwAFqcunLF6mmGH3
uY4u+0EKgp33t0+d2I2VR7j0lw9TMJCgfQDOmOOCvDabtlEKluWe7Uv7zwLb
vpueXMamoHyxSuSj85aYEd26mJ+k7yt0jfH6K1Y45vVjeIii4KJssfRWe2us
lkoIjfxJwd3oGS6fF9boojda+nGcgrW7F/yTd7TB7JKnjTq/KbjxXDn9w2sb
tDoplc2coCDj4Zy6rKstElHNZaGTFOSGjfq5f7TFT6sZy/dNURAtISMm52SH
DpFWRurTFFQp83eHf7VDFRvf0H+0LfCbe0Wbmz1OAtlX8YeCCvX62IvD9gh1
paOWMxQoe1ZbzgbuQStFq7kB2u7f1XR9D2sPTpnZlLj+peDl5aiNEOaAEo/9
fN7S9nSDjYHcuAMmShuSW/5RMH87tDH5kCNOrFX+d4a2d6vvNI6ecESPIF5Z
krYfuar5+ocx8eQ9DRPdWQpq6oKn5ueZuMj3R+dx2u4+3R8y4k2B0QrzzyDI
AtnZW0WzOoJYE9hpMnOTgNRndwf3OCzD9Rumazd1sEBgSprk2ySN6eJV7U4d
bHC6WjsvryKHc9t2eDmmc4ArLkRrDBRxU3BYlsQKEg7/shMfdlFBlLu2eWcM
CYl8ShPrCxkokyKoYvqIBJb7XR8VOw1UvKwm9PUvCdGLj6g6uGqhMeO8bJkC
BZOL24wL/Dahr4funJgxBTne3S7P3Ddjo1dhsJYbBZEZT8JUvPXQufPZx8th
FJjy7Bs4H7wFRVkiMqVJFOgvsK5rbGLitLVBlhtdb5f+iSa29xf4IhT4mbeR
Bd84nzyOTvAizx7bqo9ZBKiQfyavOoljXvD7scpoFigYajg67FiJ655PmGmn
seEL53Vy9aq1aJF+w7DClQOK9v45JwzXYYoVzwa3vxxYNjhiyDRTxuZpwQ5f
LxLchZVt89M34rTm3bplt0hQZijxjrxRx9OCD7Iixuj78VerO/5GE1/X9jyY
WUnB/cb9m7pZ2mjz6sPNga0URC2XH4gb1MF8Lfv3AUwKVneHfjP7qotDJt36
wYcouJNGtbSP66OO3DbMS6Ag/nprRnY+E/urfGp30/VKdUQZcjKnQK801cj8
CgGuIjnvjh8VwZmPcifP/CRgpFowqWG9DBrEpDLi/rDhld/Joxd05VEzou03
dyMHPlQdeb3XYD0aeQxb7dMm4T1P69eIwA3YbWh9zTCHhKpZxcKmUjUsvfRr
2OotCddybZ8FvNDAmztN4s4KUPDb5eurvo9MdCo6QQTTeB5nvDSd8H4OY+Gh
cFGDDUZDwZ2Nr7mRf02BjXYKAf9ml8czXZZgMP+F0XwnFmj5tgjPm65AUbel
sdf82FByyrs7ME8WueTGz2gbc6B528h2iwcK2JAa/TKJxYH9exs+Zrcp4aGN
kud1nEl4dqoq3oJ/I640mmXG15DwOM/1xc4CdbS23v74KEHCeKHweOFpTZx6
FHqDkKBgneCma/uvauNk2b3n6/QpOBT0/DKzXAdjq99MHdpDATXyYEV/kS5G
F2da3fOn4PDTzcpvG/RRKKGWOhZHgULq1MxsIhNt9c6J7KDrnTPWvjdW/Ase
7/Gy3tVLwD2+dfr3HRdia5Ygb9hLAqZe5OjtZazGs01PHDmf2ZAvvPqOe70c
7i2q3FZZzIGAvN8nFO8p4orkNW5860lYfywtsmZQBedAMH02hQTJhIqHwTJq
eODPtnzqGQnmMynne05rICXdQNhwU1CgIbXDtIeJc+Kbn3rTeAoKLL2pzGHo
PhonKWHHgoQJs3l9SQFU1JfZZFdMgAa2PR6N+gtKFRn5jbkE2CRXHgwkmSj0
MH84ko5/qB7iLeDTCpk9qtJrj7Eh3LM5wr6TC5fqWgx5JBMwyF9hxPi4GCUn
Vbq2m7JAP5rLy+6JFIY83rd3iQsb+L6oBzy3pvvnrHYjW5cDfDfKV2gmK2B/
ViHp8J0DJwullDfGKKHXItfUETt6XrwYXa7cror3ry7NlagmQcp0WmfyiDrq
igWkeA+TUFf7R7w0SBNTbDzX2y2lgFm/2rcuQxt9V1hs36ZLgc/5dfzGKToY
Mx8oO2pH+48GbZI/posX70hJ7vOjwJ7q/7IvTx9z/fTS/WPpeRO69Lp2NBPd
WcjYStcbuuD0sdDqn+BRGSkaSRBAxR9iuZkIodbe5eLqnQTMfX+XW1cvjRNC
Hu2GvWyYdhlybQ+Uw04FynVNPgduCjW4CMcpovIpk+E1siRY3iIfmBWrYMQd
1YC64yQ8bR92Ne9n4KXt4XMKPSQUXZPjORaqga/MMj0uzpHgI639J7adicUP
HTT303hiVwp+Gy/+Dl8nbmuOx7Pgekhe3Qd+fnQl+kv0Cggo5ZZJ9k/8Ayk9
XbZ9FwiQC+mULv3BxHyxRYERdHw+Ttb8ynwHg7OXl7RSLFjqt37p8h88+OGN
qXLoSQLSE99xBRVMgF9U9DWHOwTULTvDZkWxwMShc/6fCgusI7ktixQXYFaC
x+RUNc3n2APCPiGzIEQlDRdkEBB/PqNGZ4qJL5zVnGPpfG1Ha0qVfGphxHdC
f7SEDRmy+57JG3DhTpFT8pM0X96nkYpnixZjloovTzWw4B6/fO5sphTyUopf
N9qxQTtFYiuXmizeVDlcL6/JgUoyKanUSwHF1KucGF84cFFnt9VfZyW0j80c
a7Cm5+3PtO/5xaqoecWg610FCff/MyYsfNTRPG6DWN8PEha3BF+uctPEh+NK
B3nFKfjJL/7obbQ2qggtFjDdTIFX/YtNLUd0cK3YSIgCzRcRNDI08dNFP4+m
r9d8KdjBxWgpTdTH+oU2xt/o95ebz3+LXhxhYoFAb4s+Xa+qDzhr1Y7BHdFb
tzumCRCEpUaMVkG0vJSkH3KXgOOBM/edw6TxtcqrJw7dbFDi62H82i2HgheS
nTqyOeBilPMoZp8iNsWcSb4kTYLnnrVsqVgVrD07xj0fR0Ll9xTl5iYGHgvR
+q7bRYLRguDGl54aWLdbMxdnSehd0m6/8h4TK5p7B9xpPD/7D1wKrx6A3LwS
k43nWNCtpidUFcOH5r1Fptb0/+3m+eSAato0mL8N41pXSvffy/YoDDDRcHOX
ahgdH9NRqzxV/AocRZIt2sXYoKr0xH9oLw8q71rzIo1+Pxv9SPqiVvQb5qPV
eyweEqDw9mdVYOIozBiIazhuY4HP5vJy/4sC6Hvm28YjZQQc/SJOKB3+B0rP
Vst203o7kr1y4ctxJo6ZfV0bTefbWyqxOsmcG02fCidH0vy4Xf6tqL5sHJqi
JATtPxGw0OmKQkjBD6jo26pt5MuCcw2U48JT/Bh9xoU75zwBRHFQRXXcDPxI
833uWUjAzJXjzSaBvNhtPl/8g+bnS3lluZqcScgs7yhwaiCAT+amakXAHCR7
YKckzf/l5XO25/8yUbQrKTuexnNLUHlNoM8lCOHl8sy/xQaNec8JybF5MA/e
fOgErVcvd4sXPotejETqQN7+LSyIN7tR9fKQFE4+EB7QsWKDeX9KmZSMLPb5
B+wbYnBgJj2i5ZODAp7TrLol8Ynmc9IBz2+7lPAYZ7WWpBWtV9zOXU+zVNGO
ZdV+s5yEPEt2R6S7Og6uei8lTvP3Pl71V3XQxPD31xKcl1CwTV1kcjRcG1lC
T3c9ofeHAwaKlpNBOpi0sbOyjd4fhi4zzD546OK7bOKzPc3fZsF3So+i9VHd
5tPeCzR/xff7tFyIYGJ94KMEPbre1ML8rlyNMXAUCP7kzMWCZRcPjkkcE8S3
oqFRqs10v6+nv1Ozl8b1z8d29T1kAzK3FghvkcPjk9buYqc4UDOQMHvTShFz
b95v7V9JQkCp/vx8gAp+6ow6eTmW1qvfjmI/Kxmo4Gqyavtjep7fkMyac9bA
z2yF8ux/JCSLpPGMtDDxLqPr9j4azxWDpbGbar8C+Tlc/0AFC96eSm/M1uPD
+Ffv7VJOE9CSI/86Q3ga+orXHS2qIAA9Vigu+sJEx9Yh4VA6fixRZPhodS9U
rL3HCJdlg26KjNQzKR4cyXyg94Tu338SnyyzZX6DbNgFZnUPAZ91ilMZaSPg
svDam1Rav8Lzp23tnAVQwXhQ70MJAa/F/JzSpv/C/OmwDZV0/qL0gVuXxpho
93uG7xidz4fXpytAkBs/Xy1+wKT5K/FOT0RcaRx6f8ZktX8noLPJiVezaBDK
zESPEOEsKBffwTe+ix8zzIMcmGcJMOl9KCnMMwPXmz7d46P5LCD8xktNmRef
torPnksngGEff1pUYhI6b8mlNN0iwMNyUdECahZMfE7VbKf9T4ofcPn+YSIn
9WxEHI0nvk1EziCeC0su6M2dofFwa0ZM9Aj8gdQ7e2sGab2X7YpsnSvmQVHX
tasD0ghYVdsS9fjXP0hWadi/8hQB1sYdwReyubHAz2tJBx1PmquLutfzYlpD
moIN7a/guN3dScwBJ3uVtiQd73llc9nTWSZe2vO7OoHOf/tfbkU6YwdqlNos
q2yiYKu9RiajeSd6vGnesvItBe1XnoX2Gu9GTtbSlb5DFJjwBjDDe62w7W5K
p/wYPY+v8V1KZ9ii0eEIfXF6/1JyerXENdweLZcbbWmn9ymCrySR0eyAMiu7
lcXofaf0PdWXzpDDTZbEY5EMDniZcU70Gm/BjhUV6TsS6fly/vrtdIYmBl19
fpMhSsH/96rRTw==
"], {{{}, {},
{RGBColor[0, 0, 1], LineBox[CompressedData["
1:eJwl0mO4EAYUBuCbW64t825hLduuZd1qWTfbtt1Wy9aW27Jt27Zt996nH+/5
/n7POScwuE1Q61ABAQGhjZDczWQ6U4PrrGYshbnMckbzgC205xbrGE8WTrGA