-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathhyperopt.py
57 lines (43 loc) · 1.47 KB
/
hyperopt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from argparse import ArgumentParser
from random import random
from timeit import default_timer as time
import optuna
from optuna.trial import Trial
from molpal.cli.args import add_args
from molpal.explorer import Explorer, IncompatibilityError
def objective(trial: Trial):
parser = ArgumentParser()
add_args(parser)
args = parser.parse_args()
# acquisition hyperparam's
args.cluster = bool(trial.suggest_int("cluster", 0, 1))
if not args.cluster and random() > 0.5:
args.epsilon = trial.suggest_float("epsilon", 0.00, 0.2, step=0.05)
args.fps = None
if args.model in {"rf", "nn"} or args.cluster:
args.encoder = trial.suggest_categorical("encoder", {"morgan", "pair", "rdkit"})
try:
exp = Explorer(**vars(args))
except (IncompatibilityError, NotImplementedError) as e:
print(e)
return float("-inf")
start = time()
exp.run()
total = time() - start
m, s = divmod(total, 60)
h, m = divmod(int(m), 60)
print(f"Total time for trial #{trial.number}: {h}h {m}m {s:0.2f}s\n")
return exp.top_k_avg
def main():
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=30)
print("#-----------------------------------------------------------------#")
print()
print("Best params:")
print(study.best_params)
print()
print("Best trial:")
print(study.best_trial)
print("Done optimizing!")
if __name__ == "__main__":
main()