-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathICA_ising.py
517 lines (369 loc) · 21.5 KB
/
ICA_ising.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import numpy as np
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
class astro_pp_model_ising:
def __init__(self
, synaptic_matrix_size
, shrink = 1.0
, stretch = 1.0
, scaler = 1.0
, shift = 0.0
, neighbor_coupling = 1
, k = 1
, T_c = 2.26918531421
):
self.synaptic_matrix_size = synaptic_matrix_size
self.exp_synaptic_matrix_size = (self.synaptic_matrix_size[0] + 2, self.synaptic_matrix_size[1] + 2)
self.list1, self.list2 = self.get_gather_scatter_spins_index(self.synaptic_matrix_size)
# PARAMETERS FOR SIMULATION ISING MODEL
self.k = k
self.T_c = T_c
# PARAMETERS FOR GENERATING ISNIG COUPLINGS
self.neighbor_coupling = -1.0 * neighbor_coupling
self.scaler = scaler
self.shrink = shrink
self.stretch = stretch
self.shift = shift
def initialize_vars(self,initial_spins=0,initial_spin_dist=0):
'''
:param initial_spins: INITIAL SPIN STATES USED TO INITIALIZE ISING SYSTEM
:param initial_spin_dist: CONSTANT AT 0 = UNIFORM SPIN DISTRIBUTION FOR INITIALIZATION
:return: TENSORFLOW DATASTRUCTURE FOR RUNNING ISING MODEL
'''
ind1 = tf.constant(self.list1, dtype=tf.int32, shape=[np.shape(self.list1)[0], np.shape(self.list1)[1]])
ind2 = tf.constant(self.list2, dtype=tf.int32, shape=[np.shape(self.list2)[0], np.shape(self.list2)[1]])
# initial spins
if type(initial_spins) == int:
print('No ising spin initialization provided')
initial_spins = np.asarray(
((np.random.randint(0, 2, size=(self.synaptic_matrix_size[0], self.synaptic_matrix_size[1])) * 2) - 1),
dtype=np.float32)
if type(initial_spin_dist) == int:
print('No spin distribuiton provided, using uniform distribution')
initial_spin_dist = np.ones((self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]),dtype=np.float32)
## initialize spin state variable
main_spins = tf.Variable(initial_spins, dtype=tf.float32,
expected_shape=[self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]],
name='main_spins')
spin_dist = tf.Variable(initial_spin_dist, dtype=tf.float32,
expected_shape=[self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]],
name='spin_dist')
param_T = tf.Variable(np.ones((self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]), dtype=np.float32),
dtype=tf.float32,
expected_shape=[self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]],
name='param_T')
J = tf.Variable(self.neighbor_coupling*np.ones((4,self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]), dtype=np.float32),
dtype=tf.float32,
expected_shape=[self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]],
name='J')
# placeholders
feed_temp_scalar = tf.placeholder(dtype=tf.float32, shape=[1])
spin_feeder = tf.placeholder(dtype=tf.float32,shape=[self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]])
return ind1, ind2, main_spins, param_T,J,spin_dist,feed_temp_scalar,spin_feeder
def reinitialize_vars(self,ind1_list,ind2_list,main_spins_arr,param_T_arr,J_arr,spin_dist_arr,out_rescaled_arr):
ind1 = tf.constant(ind1_list, dtype=tf.int32, shape=[np.shape(ind1_list)[0], np.shape(ind1_list)[1]])
ind2 = tf.constant(ind2_list, dtype=tf.int32, shape=[np.shape(ind2_list)[0], np.shape(ind2_list)[1]])
## initialize spin state variable
main_spins = tf.Variable(main_spins_arr, dtype=tf.float32,
expected_shape=[self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]],
name='main_spins')
spin_dist = tf.Variable(spin_dist_arr, dtype=tf.float32,
expected_shape=[self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]],
name='spin_dist')
param_T = tf.Variable(param_T_arr,
dtype=tf.float32,
expected_shape=[self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]],
name='param_T')
J = tf.Variable(
J_arr,
dtype=tf.float32,
expected_shape=[self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]],
name='J')
# placeholders
feed_temp_scalar = tf.placeholder(dtype=tf.float32, shape=[1])
spin_feeder = tf.placeholder(dtype=tf.float32,
shape=[self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]])
return ind1, ind2, main_spins, param_T, J, spin_dist, feed_temp_scalar, spin_feeder
def reinitialize_spins(self,main_spins,feed_spins):
'''
:param main_spins: MATRIX WITH SPIN STATES OF ISING LATTICE
:param feed_spins: NEW SPINS
:return: NEW SPIN STATES MATRIX
'''
return tf.assign(main_spins,feed_spins)
def get_magnetization(self,main_spins):
'''
COMPUTES MAGNETIZATION OF ISING MODEL
:param main_spins: MATRIX WITH SPIN STATES OF ISING LATTICE
:return:
'''
return tf.reduce_mean(main_spins)
# used
def get_energy(self,main_spins):
'''
COMPUTES ENERGY OF ISING MODEL
:param main_spins: MATRIX WITH SPIN STATES OF ISING LATTICE
:return: SYSTEM ENERGY VALUE
'''
# expand main_spins matrix for periodic boundary conditions (opposing corners connect)
exp_main_spins = tf.concat([
tf.concat([tf.expand_dims(
tf.expand_dims(main_spins[self.synaptic_matrix_size[0] - 1, self.synaptic_matrix_size[1] - 1], 0), 0),
tf.expand_dims(main_spins[self.synaptic_matrix_size[0] - 1, :], 0),
tf.expand_dims(tf.expand_dims(main_spins[self.synaptic_matrix_size[0] - 1, 0], 0), 0)], 1),
tf.concat([tf.expand_dims(main_spins[:, self.synaptic_matrix_size[1] - 1], 1),
main_spins,
tf.expand_dims(main_spins[:, 0], 1)], 1),
tf.concat([tf.expand_dims(tf.expand_dims(main_spins[0, self.synaptic_matrix_size[1] - 1], 0), 0),
tf.expand_dims(main_spins[0, :], 0),
tf.expand_dims(tf.expand_dims(main_spins[0, 0], 0), 0)], 1)
], 0)
sum_spins_around = tf.add_n([
exp_main_spins[0:self.exp_synaptic_matrix_size[0] - 2, 1:self.exp_synaptic_matrix_size[1] - 1],
exp_main_spins[2:self.exp_synaptic_matrix_size[0], 1:self.exp_synaptic_matrix_size[1] - 1],
exp_main_spins[1:self.exp_synaptic_matrix_size[0] - 1, 0:self.exp_synaptic_matrix_size[1] - 2],
exp_main_spins[1:self.exp_synaptic_matrix_size[0] - 1, 2:self.exp_synaptic_matrix_size[1]]
])
energy_cur = tf.scalar_mul(self.neighbor_coupling, tf.multiply(main_spins, sum_spins_around))
return tf.reduce_mean(energy_cur)
def set_temperature(self,param_T,feed_temp):
'''
SETS TEMPERATURE
:param param_T: T VARIABLE
:param feed_temp: NEW T
:return: NEW T
'''
new_temp = tf.add(tf.scalar_mul(0.0, param_T), feed_temp)
return tf.assign(param_T, new_temp)
def expand_spin_matrix(self, main_spins):
'''
EXPANDS SPIN STATE MATRIX WITH BOUNDARY IN ACCORDANCE WITH PERIODIC BOUNDARY CONDITIONS
:param main_spins: MATRIX WITH SPIN STATES OF ISING LATTICE
:return: MATRIX WITH EACH DIMENSTION INCREASED BY 2
'''
# expand main_spins matrix for periodic boundary conditions (opposing corners connect)
exp_main_spins = tf.concat([
tf.concat([tf.expand_dims(
tf.expand_dims(main_spins[self.synaptic_matrix_size[0] - 1, self.synaptic_matrix_size[1] - 1], 0), 0),
tf.expand_dims(main_spins[self.synaptic_matrix_size[0] - 1, :], 0),
tf.expand_dims(tf.expand_dims(main_spins[self.synaptic_matrix_size[0] - 1, 0], 0), 0)], 1),
tf.concat([tf.expand_dims(main_spins[:, self.synaptic_matrix_size[1] - 1], 1),
main_spins,
tf.expand_dims(main_spins[:, 0], 1)], 1),
tf.concat([tf.expand_dims(tf.expand_dims(main_spins[0, self.synaptic_matrix_size[1] - 1], 0), 0),
tf.expand_dims(main_spins[0, :], 0),
tf.expand_dims(tf.expand_dims(main_spins[0, 0], 0), 0)], 1)
], 0)
return exp_main_spins
def linear_coupling_func(self,distance_metric,slope,b, power_scaling=1):
'''
GENERATES PRELIMINARY COUPLING VALUE J FOR EACH CONNECTION IN ISING LATTICE
:param distance_metric: DISTANCE BETWEEN SPINS
:param slope: PARAMETER FOR J COMPUTATION
:param b: PARAMETER FOR J COMPUTATION
:param power_scaling: PARAMETER FOR J COMPUTATION
:return:
'''
return tf.pow(tf.add(b,tf.scalar_mul(slope,distance_metric)),power_scaling)
def compute_abs_difference(self,landscape_main,landscape_neighbor,max_dif):
'''
COMPUTES DIFFERENCE BETWEEN NEIGHBORING VALUES IN 2D MATRIX
:param landscape_main: MATRIX WITH REAL VALUES
:param landscape_neighbor: MATRIX WITH REAL VALUES
:param max_dif: MAXIMUM ALLOWED DIFFERENCE
:return: MATRIX OF DIFFERENCES
'''
return tf.clip_by_value(tf.abs(tf.subtract(landscape_main,landscape_neighbor)),0,max_dif)
# USED
def set_custom_coupling_v4(self,landscape,J, max_diff=2, power_scaling=1):
'''
COMPUTES FINAL COUPLING VALUES J FOR ISING LATTICE
:param landscape: REAL SURFACE GENERATED OVER AREA OF LATTICE
:param J:
:param max_diff:
:param power_scaling:
:return:
'''
exp_landscape = self.expand_spin_matrix(landscape)
## calc difs
# up dif
up_dif = self.compute_abs_difference(landscape, exp_landscape[0:self.exp_synaptic_matrix_size[0] - 2,
1:self.exp_synaptic_matrix_size[1] - 1], max_diff)
# down dif
down_dif = self.compute_abs_difference(landscape, exp_landscape[2:self.exp_synaptic_matrix_size[0],
1:self.exp_synaptic_matrix_size[1] - 1], max_diff)
# left dif
left_dif = self.compute_abs_difference(landscape, exp_landscape[1:self.exp_synaptic_matrix_size[0] - 1,
0:self.exp_synaptic_matrix_size[1] - 2], max_diff)
# right dif
right_dif = self.compute_abs_difference(landscape, exp_landscape[1:self.exp_synaptic_matrix_size[0] - 1,
2:self.exp_synaptic_matrix_size[1]], max_diff)
## compute linear map
dif_ave, dif_max, dif_min = self.get_landscape_dif_stats(landscape=landscape)
slope = tf.divide(1,tf.subtract(dif_ave,dif_max))
b = tf.negative(tf.multiply(slope,dif_max))
# up
up_coup_temp = self.linear_coupling_func(up_dif,slope=slope,b=b,power_scaling=power_scaling)
# down
down_coup_temp = self.linear_coupling_func(down_dif, slope=slope, b=b, power_scaling=power_scaling)
# left
left_coup_temp = self.linear_coupling_func(left_dif, slope=slope, b=b, power_scaling=power_scaling)
# right
right_coup_temp = self.linear_coupling_func(right_dif, slope=slope, b=b, power_scaling=power_scaling)
up_coup = tf.add(J[0, :, :], tf.negative(up_coup_temp))
down_coup = tf.add(J[1, :, :], tf.negative(down_coup_temp))
left_coup = tf.add(J[2, :, :], tf.negative(left_coup_temp))
right_coup = tf.add(J[3, :, :], tf.negative(right_coup_temp))
new_J = tf.concat(
[tf.expand_dims(up_coup, axis=0), tf.expand_dims(down_coup, axis=0), tf.expand_dims(left_coup, axis=0),
tf.expand_dims(right_coup, axis=0)], axis=0)
mean = tf.reduce_mean(new_J)
new2_J = tf.multiply(new_J,tf.divide(-1.0,mean))
new3_J = tf.subtract(tf.abs(new2_J),2)
mean2 = tf.reduce_mean(new3_J)
new4_J = tf.multiply(new3_J,tf.divide(-1.0,mean2))
### add skew
mean2_2 = tf.reduce_mean(new4_J)
adj_J = tf.subtract(new4_J,mean2_2+self.shift)
skewed1_J = self.shrink*tf.clip_by_value(adj_J,-1,0) # shrink below -1 negs
skewed2_J = self.stretch*tf.clip_by_value(adj_J,0,1) # stretch above -1 negs
newS_J = tf.add(skewed1_J,skewed2_J)
meanS = tf.reduce_mean(newS_J)
newS1_J = tf.subtract(newS_J,meanS-self.neighbor_coupling)
new5_J = tf.scalar_mul(self.scaler,newS1_J)
mean3 = tf.reduce_mean(new5_J)
new6_J = tf.add((-1.0-mean3),new5_J)
return tf.assign(J, new6_J)
def get_landscape_dif_stats(self,landscape):
'''
EVALUATES DIFFERENCES IN SURFACE BETWEEN NEIGHBORING SPIN LOCATIONS
:param landscape: SURFACE MATRIX
:return: DIFFERENCE STATS
'''
exp_landscape = self.expand_spin_matrix(landscape)
up_dif = self.compute_abs_difference(landscape, exp_landscape[0:self.exp_synaptic_matrix_size[0] - 2,
1:self.exp_synaptic_matrix_size[1] - 1],max_dif=1.0)
down_dif = self.compute_abs_difference(landscape, exp_landscape[2:self.exp_synaptic_matrix_size[0],
1:self.exp_synaptic_matrix_size[1] - 1],max_dif=1.0)
left_dif = self.compute_abs_difference(landscape, exp_landscape[1:self.exp_synaptic_matrix_size[0] - 1,
0:self.exp_synaptic_matrix_size[1] - 2],max_dif=1.0)
right_dif = self.compute_abs_difference(landscape, exp_landscape[1:self.exp_synaptic_matrix_size[0] - 1,
2:self.exp_synaptic_matrix_size[1]],max_dif=1.0)
dif_ave = tf.reduce_mean(tf.stack(
[tf.reduce_mean(up_dif), tf.reduce_mean(down_dif), tf.reduce_mean(left_dif), tf.reduce_mean(right_dif)]))
dif_max = tf.reduce_max(tf.stack(
[tf.reduce_max(up_dif), tf.reduce_max(down_dif), tf.reduce_max(left_dif), tf.reduce_max(right_dif)]))
dif_min = tf.reduce_min(tf.stack(
[tf.reduce_min(up_dif), tf.reduce_min(down_dif), tf.reduce_min(left_dif), tf.reduce_min(right_dif)]))
return dif_ave,dif_max,dif_min
def pre_update_computations(self, main_spins, J):
'''
:param main_spins: MATRIX WITH SPIN STATES OF ISING LATTICE
:param J: COUPLING MATRIX
:return: CHANGE IN ENERGY IF SPINS ARE FLIPPED
'''
exp_main_spins = self.expand_spin_matrix(main_spins)
energy_cur = tf.add_n([
tf.multiply(J[0,:,:],tf.multiply(main_spins,exp_main_spins[0:self.exp_synaptic_matrix_size[0] - 2, 1:self.exp_synaptic_matrix_size[1] - 1])),
tf.multiply(J[1, :, :],tf.multiply(main_spins,exp_main_spins[2:self.exp_synaptic_matrix_size[0], 1:self.exp_synaptic_matrix_size[1] - 1])),
tf.multiply(J[2, :, :],tf.multiply(main_spins,exp_main_spins[1:self.exp_synaptic_matrix_size[0] - 1, 0:self.exp_synaptic_matrix_size[1] - 2])),
tf.multiply(J[3, :, :],tf.multiply(main_spins,exp_main_spins[1:self.exp_synaptic_matrix_size[0] - 1, 2:self.exp_synaptic_matrix_size[1]]))
])
energy_fin = tf.add_n([
tf.multiply(J[0, :, :], tf.multiply(tf.negative(main_spins), exp_main_spins[0:self.exp_synaptic_matrix_size[0] - 2,
1:self.exp_synaptic_matrix_size[1] - 1])),
tf.multiply(J[1, :, :], tf.multiply(tf.negative(main_spins), exp_main_spins[2:self.exp_synaptic_matrix_size[0],
1:self.exp_synaptic_matrix_size[1] - 1])),
tf.multiply(J[2, :, :], tf.multiply(tf.negative(main_spins), exp_main_spins[1:self.exp_synaptic_matrix_size[0] - 1,
0:self.exp_synaptic_matrix_size[1] - 2])),
tf.multiply(J[3, :, :], tf.multiply(tf.negative(main_spins), exp_main_spins[1:self.exp_synaptic_matrix_size[0] - 1,
2:self.exp_synaptic_matrix_size[1]]))
])
energy_net = tf.subtract(energy_fin, energy_cur)
return energy_cur,energy_fin,energy_net
def update_main_spins_1(self, ind1, main_spins, param_T, energy_net):
'''
:param ind1: INDICES OF 1/2 SET OF SPINS THAT ARE NOT NEIGHBORING TO BE UPDATED
:param main_spins: MATRIX WITH SPIN STATES OF ISING LATTICE
:param param_T: TEMPERATURE
:param energy_net: CHANGE IN ENERGY
:return: UPDATED SPIN STATES FOR 1/2 SET OF SPINS
'''
# list 1 compression
compressed_energy_1 = tf.gather_nd(energy_net, ind1)
compressed_spins_1 = tf.gather_nd(main_spins, ind1)
compressed_T_1 = tf.gather_nd(param_T, ind1)
# list 1
compressed_decision_matrix_1 = tf.floor(tf.clip_by_value(compressed_energy_1, -1, 0)) + 1.0
compressed_final_decision_matrix_1 = tf.subtract(
tf.scalar_mul(2.0,
tf.multiply(
tf.add(
1.0,
tf.floor(
tf.clip_by_value(
tf.subtract(
tf.random_uniform(shape=[np.shape(self.list1)[0]]),
tf.exp(tf.divide(tf.negative(compressed_energy_1),
tf.scalar_mul(self.k, compressed_T_1)))), -1, 0))),
compressed_decision_matrix_1)),
1.0)
final_decision_matrix_1 = tf.add(1.0, tf.scalar_mul(2.0, tf.clip_by_value(
tf.scatter_nd(ind1, compressed_final_decision_matrix_1,
shape=[self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]]), -1,
0)))
new_spin_state_1 = tf.multiply(main_spins, final_decision_matrix_1)
return tf.assign(main_spins, new_spin_state_1)
def update_main_spins_2(self, ind2, main_spins, param_T, energy_net):
'''
:param ind2: INDICES OF 2/2 SET OF SPINS THAT ARE NOT NEIGHBORING TO BE UPDATED
:param main_spins: MATRIX WITH SPIN STATES OF ISING LATTICE
:param param_T: TEMPERATURE
:param energy_net: CHANGE IN ENERGY
:return: UPDATED SPIN STATES FOR 2/2 SET OF SPINS
'''
# list 2 compression
compressed_energy_2 = tf.gather_nd(energy_net, ind2)
compressed_spins_2 = tf.gather_nd(main_spins, ind2)
compressed_T_2 = tf.gather_nd(param_T, ind2)
# list 2
compressed_decision_matrix_2 = tf.floor(tf.clip_by_value(compressed_energy_2, -1, 0)) + 1.0
compressed_final_decision_matrix_2 = tf.subtract(
tf.scalar_mul(2.0,
tf.multiply(
tf.add(
1.0,
tf.floor(
tf.clip_by_value(
tf.subtract(
tf.random_uniform(shape=[np.shape(self.list2)[0]]),
tf.exp(tf.divide(tf.negative(compressed_energy_2),
tf.scalar_mul(self.k, compressed_T_2)))), -1, 0))),
compressed_decision_matrix_2)),
1.0)
final_decision_matrix_2 = tf.add(1.0, tf.scalar_mul(2.0, tf.clip_by_value(
tf.scatter_nd(ind2, compressed_final_decision_matrix_2,
shape=[self.synaptic_matrix_size[0], self.synaptic_matrix_size[1]]), -1,
0)))
new_spin_state_2 = tf.multiply(main_spins, final_decision_matrix_2)
return tf.assign(main_spins, new_spin_state_2)
def get_gather_scatter_spins_index(self, synaptic_matrix_size):
'''
ASSEMBLES INDICES OF 2 SETS OF NON-NEIGHBORING SPINS
:param synaptic_matrix_size: SHAPE OF ISING LATTICE
:return: INDICES
'''
## create spin lists for gather functions
spin_list_1 = []
spin_list_2 = []
for r in range(0, synaptic_matrix_size[0]):
for c in range(0, synaptic_matrix_size[1]):
if r % 2 == 0 and c % 2 == 0:
spin_list_1.append([r, c])
elif r % 2 == 1 and c % 2 == 1:
spin_list_1.append([r, c])
elif r % 2 == 0 and c % 2 == 1:
spin_list_2.append([r, c])
elif r % 2 == 1 and c % 2 == 0:
spin_list_2.append([r, c])
return spin_list_1, spin_list_2