-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetection_camera.py
272 lines (210 loc) · 10.9 KB
/
detection_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from MultiMsgSync import TwoStageHostSeqSync
import blobconverter
import cv2
import depthai as dai
import numpy as np
####################################
print("DepthAI version", dai.__version__)
def frame_norm(frame, bbox):
normVals = np.full(len(bbox), frame.shape[0])
normVals[::2] = frame.shape[1]
return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)
def create_pipeline(stereo):
pipeline = dai.Pipeline()
print("Creating Color Camera...")
cam = pipeline.create(dai.node.ColorCamera)
cam.setPreviewSize(1080, 1080)
cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
cam.setInterleaved(False)
cam.setBoardSocket(dai.CameraBoardSocket.RGB)
# Workaround: remove in 2.18, use `cam.setPreviewNumFramesPool(10)`
# This manip uses 15*3.5 MB => 52 MB of RAM.
copy_manip = pipeline.create(dai.node.ImageManip)
copy_manip.setNumFramesPool(15)
copy_manip.setMaxOutputFrameSize(3499200)
cam.preview.link(copy_manip.inputImage)
cam_xout = pipeline.create(dai.node.XLinkOut)
cam_xout.setStreamName("color")
copy_manip.out.link(cam_xout.input)
# ImageManip will resize the frame before sending it to the Face detection NN node
face_det_manip = pipeline.create(dai.node.ImageManip)
face_det_manip.initialConfig.setResize(300, 300)
face_det_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.RGB888p)
copy_manip.out.link(face_det_manip.inputImage)
if stereo:
monoLeft = pipeline.create(dai.node.MonoCamera)
monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
monoRight = pipeline.create(dai.node.MonoCamera)
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
stereo = pipeline.create(dai.node.StereoDepth)
stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
monoLeft.out.link(stereo.left)
monoRight.out.link(stereo.right)
# Spatial Detection network if OAK-D
print("OAK-D detected, app will display spatial coordiantes")
face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
face_det_nn.setBoundingBoxScaleFactor(0.8)
face_det_nn.setDepthLowerThreshold(100)
face_det_nn.setDepthUpperThreshold(5000)
stereo.depth.link(face_det_nn.inputDepth)
else: # Detection network if OAK-1
print("OAK-1 detected, app won't display spatial coordiantes")
face_det_nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
face_det_nn.setConfidenceThreshold(0.5)
face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0004", shaves=6))
face_det_nn.input.setQueueSize(1)
face_det_manip.out.link(face_det_nn.input)
# Send face detections to the host (for bounding boxes)
face_det_xout = pipeline.create(dai.node.XLinkOut)
face_det_xout.setStreamName("detection")
face_det_nn.out.link(face_det_xout.input)
# Script node will take the output from the face detection NN as an input and set ImageManipConfig
# to the 'recognition_manip' to crop the initial frame
image_manip_script = pipeline.create(dai.node.Script)
face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
# Remove in 2.18 and use `imgFrame.getSequenceNum()` in Script node
face_det_nn.passthrough.link(image_manip_script.inputs['passthrough'])
copy_manip.out.link(image_manip_script.inputs['preview'])
image_manip_script.setScript("""
import time
msgs = dict()
def add_msg(msg, name, seq = None):
global msgs
if seq is None:
seq = msg.getSequenceNum()
seq = str(seq)
# node.warn(f"New msg {name}, seq {seq}")
# Each seq number has it's own dict of msgs
if seq not in msgs:
msgs[seq] = dict()
msgs[seq][name] = msg
# To avoid freezing (not necessary for this ObjDet model)
if 15 < len(msgs):
node.warn(f"Removing first element! len {len(msgs)}")
msgs.popitem() # Remove first element
def get_msgs():
global msgs
seq_remove = [] # Arr of sequence numbers to get deleted
for seq, syncMsgs in msgs.items():
seq_remove.append(seq) # Will get removed from dict if we find synced msgs pair
# node.warn(f"Checking sync {seq}")
# Check if we have both detections and color frame with this sequence number
if len(syncMsgs) == 2: # 1 frame, 1 detection
for rm in seq_remove:
del msgs[rm]
# node.warn(f"synced {seq}. Removed older sync values. len {len(msgs)}")
return syncMsgs # Returned synced msgs
return None
def correct_bb(bb):
if bb.xmin < 0: bb.xmin = 0.001
if bb.ymin < 0: bb.ymin = 0.001
if bb.xmax > 1: bb.xmax = 0.999
if bb.ymax > 1: bb.ymax = 0.999
return bb
while True:
time.sleep(0.001) # Avoid lazy looping
preview = node.io['preview'].tryGet()
if preview is not None:
add_msg(preview, 'preview')
face_dets = node.io['face_det_in'].tryGet()
if face_dets is not None:
# TODO: in 2.18.0.0 use face_dets.getSequenceNum()
passthrough = node.io['passthrough'].get()
seq = passthrough.getSequenceNum()
add_msg(face_dets, 'dets', seq)
sync_msgs = get_msgs()
if sync_msgs is not None:
img = sync_msgs['preview']
dets = sync_msgs['dets']
for i, det in enumerate(dets.detections):
cfg = ImageManipConfig()
correct_bb(det)
cfg.setCropRect(det.xmin, det.ymin, det.xmax, det.ymax)
# node.warn(f"Sending {i + 1}. det. Seq {seq}. Det {det.xmin}, {det.ymin}, {det.xmax}, {det.ymax}")
cfg.setResize(62, 62)
cfg.setKeepAspectRatio(False)
node.io['manip_cfg'].send(cfg)
node.io['manip_img'].send(img)
""")
recognition_manip = pipeline.create(dai.node.ImageManip)
recognition_manip.initialConfig.setResize(62, 62)
recognition_manip.setWaitForConfigInput(True)
image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
# Second stange recognition NN
print("Creating recognition Neural Network...")
recognition_nn = pipeline.create(dai.node.NeuralNetwork)
recognition_nn.setBlobPath(blobconverter.from_zoo(name="age-gender-recognition-retail-0013", shaves=6))
recognition_manip.out.link(recognition_nn.input)
recognition_xout = pipeline.create(dai.node.XLinkOut)
recognition_xout.setStreamName("recognition")
recognition_nn.out.link(recognition_xout.input)
return pipeline
class myCamera:
def __init__(self):
self.stats = {}
self.number_faces = str(0)
def run_in_loop(self):
print("Start run_in_loop")
with dai.Device() as device:
stereo = 1 < len(device.getConnectedCameras())
device.startPipeline(create_pipeline(stereo))
sync = TwoStageHostSeqSync()
queues = {}
# Create output queues
for name in ["color", "detection", "recognition"]:
queues[name] = device.getOutputQueue(name)
while True:
# print("Debug: dit is self.age en self.number_faces", self.number_faces)
# print("self.stats: ", self.stats)
stats = {}
for name, q in queues.items():
# Add all msgs (color frames, object detections and recognitions) to the Sync class.
if q.has():
sync.add_msg(q.get(), name)
msgs = sync.get_msgs()
if msgs is not None:
frame = msgs["color"].getCvFrame()
detections = msgs["detection"].detections
recognitions = msgs["recognition"]
number_faces = str(len(detections))
self.number_faces = number_faces
for i, detection in enumerate(detections):
bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
# Decoding of recognition results
rec = recognitions[i]
# safe Age variable
age = int(float(np.squeeze(np.array(rec.getLayerFp16('age_conv3')))) * 100)
# self.age = str(age)
gender = np.squeeze(np.array(rec.getLayerFp16('prob')))
gender_str = "vrouw" if gender[0] > gender[1] else "man"
stats[i] = {}
stats[i]['age'] = age
stats[i]['gender'] = gender_str
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
y = (bbox[1] + bbox[3]) // 2
cv2.putText(frame, str(age), (bbox[0], y), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (0, 0, 0), 8)
cv2.putText(frame, str(age), (bbox[0], y), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (255, 255, 255), 2)
cv2.putText(frame, gender_str, (bbox[0], y + 30), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (0, 0, 0), 8)
cv2.putText(frame, gender_str, (bbox[0], y + 30), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (255, 255, 255), 2)
if stereo:
# You could also get detection.spatialCoordinates.x and detection.spatialCoordinates.y coordinates
coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
cv2.imshow("Camera", frame)
self.stats = stats
if cv2.waitKey(1) == ord('q'):
break
# self.stats = stats
if __name__ == "__main__":
# Create camera object
camera = myCamera()
# Start in loop
camera.run_in_loop()
# age, gender, number_faces = camera()
# p1 = mp.Process(target=speech(age, 'C:/Users/Gebruiker/Documents/litanie/models_voice/checkpoint_70000.pth'))
# p1.start