-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparser_util.py
202 lines (185 loc) · 7.47 KB
/
parser_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import numpy as np
class Config(object):
normal_file = 'data//normal.aligned'
simple_file = 'data//simple.aligned'
pwkp_file_full = 'data//PWKP_full.txt'
pwkp_file = 'data//PWKP_train.txt'
pwkp_test = 'data//PWKP_test.txt'
max_simple_timesteps = 40
max_normal_timesteps = 40
# start, end are vectors for start and end tokens
def make_seq2seq_data(simple, normal, start, end, pad, tok2id, id2tok=None):
global max_normal_timesteps
global max_simple_timesteps
skipped_count = 0
assert(len(simple) == len(normal))
data = []
for i in range(len(simple)):
enc = [tok2id[pad]] * max_simple_timesteps
sentence = simple[i].split(' ')
enc_len = len(sentence)
if len(sentence) > max_simple_timesteps:
skipped_count += 1
continue
offset = max_simple_timesteps - len(sentence)
for j in range(offset, max_simple_timesteps):
enc[j] = tok2id[sentence[j - offset]]
if id2tok is not None:
assert(id2tok[enc[j]] == sentence[j-offset])
dec = [tok2id[end]] * max_normal_timesteps
sentence = normal[i].split(' ')
if len(sentence) + 1 > max_normal_timesteps:
skipped_count += 1
continue
dec_len = len(sentence)
for j in range(len(sentence)):
dec[j] = tok2id[sentence[j]]
if id2tok is not None:
assert(id2tok[dec[j]] == sentence[j])
assert(enc_len <= max_simple_timesteps)
assert(dec_len <= max_normal_timesteps)
assert(len(enc) <= max_simple_timesteps)
assert(len(dec) <= max_normal_timesteps)
data.append((enc, [tok2id[start]] + dec, dec + [tok2id[end]], enc_len, dec_len))
print('skipped {} long sentences'.format(skipped_count))
return data
# start, end are vectors for start and end tokens
def make_seq2seq_data_v2(simple, normal, start, end, pad, tok2id, id2tok=None):
global max_normal_timesteps
global max_simple_timesteps
skipped_count = 0
assert(len(simple) == len(normal))
data = []
for i in range(len(simple)):
dec = [tok2id[end]] * max_simple_timesteps
sentence = simple[i].split(' ')
dec_len = len(sentence)
if len(sentence) + 1 > max_simple_timesteps:
skipped_count += 1
continue
for j in range(len(sentence)):
dec[j] = tok2id[sentence[j]]
if id2tok is not None:
assert(id2tok[dec[j]] == sentence[j])
enc = [tok2id[pad]] * max_normal_timesteps
sentence = normal[i].split(' ')
if len(sentence) > max_normal_timesteps:
skipped_count += 1
continue
offset = max_normal_timesteps - len(sentence)
enc_len = len(sentence)
assert(len(sentence) <= max_normal_timesteps)
for j in range(offset, max_normal_timesteps):
enc[j] = tok2id[sentence[j - offset]]
if id2tok is not None:
assert(id2tok[enc[j]] == sentence[j-offset])
assert(enc_len <= max_normal_timesteps)
assert(dec_len <= max_simple_timesteps)
assert(len(enc) <= max_normal_timesteps)
assert(len(dec) <= max_simple_timesteps)
data.append((enc, [tok2id[start]] + dec, dec + [tok2id[end]], enc_len, dec_len))
print('skipped {} long sentences'.format(skipped_count))
return data
# start, end are vectors for start and end tokens
def make_fill_blank_data(simple, normal, pad, tok2id, id2tok=None):
global max_normal_timesteps
global max_simple_timesteps
skipped_count = 0
#assert(len(simple) == len(normal))
normal_data = []
for i in range(len(normal)):
enc = [tok2id[pad]] * max_simple_timesteps
sentence = normal[i].split(' ')
if len(sentence) > max_simple_timesteps:
skipped_count += 1
continue
offset = max_simple_timesteps - len(sentence)
enc_len = len(sentence)
assert(len(sentence) <= max_simple_timesteps)
for j in range(offset, max_simple_timesteps - 1):
enc[j + 1] = tok2id.get(sentence[j - offset], tok2id['<unk>'])
assert(enc_len <= max_simple_timesteps)
assert(len(enc) <= max_simple_timesteps)
normal_data.append((enc, tok2id.get(sentence[-1], tok2id['<unk>']), enc_len))
simple_data = []
for i in range(len(simple)):
enc = [tok2id[pad]] * max_simple_timesteps
sentence = simple[i].split(' ')
if len(sentence) > max_simple_timesteps:
skipped_count += 1
continue
offset = max_simple_timesteps - len(sentence)
enc_len = len(sentence)
assert(len(sentence) <= max_simple_timesteps)
for j in range(offset, max_simple_timesteps - 1):
enc[j + 1] = tok2id.get(sentence[j - offset], tok2id['<unk>'])
assert(enc_len <= max_simple_timesteps)
assert(len(enc) <= max_simple_timesteps)
simple_data.append((enc, tok2id.get(sentence[-1], tok2id['<unk>']), enc_len))
print('skipped {} long sentences'.format(skipped_count))
return normal_data, simple_data
#returns list of sentences for simple and aligned
#sentences are a single string
def parse_aligned():
config = Config()
normal = []
with open(config.normal_file) as f:
for line in f.readlines():
sp = line.strip().split('\t')
normal.append(sp[2])
simple = []
with open(config.simple_file) as f:
for line in f.readlines():
sp = line.strip().split('\t')
simple.append(sp[2])
return normal, simple
def parse_pwkp(mode='full'):
if mode == 'full':
filename = Config().pwkp_file_full
elif mode == 'train':
filename = Config().pwkp_file
else:
assert(mode == 'test')
filename = Config().pwkp_test
global max_encoder_timesteps
global max_decoder_timesteps
normal = []
simple = []
count = 0
with open(filename, 'rb') as f:
parsing_normal = True
simple_sentence = ''
parse_head = ['', '']
i = 0
for ln in f:
#if i > 20:
# break
i+=1
decoded = False
sentence = ''
for cp in ('cp1252', 'cp850', 'utf-8', 'utf8'):
try:
sentence = ln.decode(cp)
decoded = True
break
except UnicodeDecodeError:
pass
if decoded:
sentence = sentence.strip()
if sentence == '':
parse_head[1] = simple_sentence.strip()
#max_encoder_timesteps = max(max_encoder_timesteps, len(simple_sentence.split(' ')))
if parse_head[0] != '' and parse_head[1] != '':
normal.append(parse_head[0])
simple.append(parse_head[1])
parse_head = ['', '']
simple_sentence = ''
parsing_normal = True
elif parsing_normal:
parse_head[0] = sentence
#max_decoder_timesteps = max(max_decoder_timesteps, len(sentence.split(' ')))
parsing_normal = False
else:
simple_sentence += ' ' + sentence
return normal, simple