forked from Heeks/heekscnc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
circular_pocket.py
225 lines (193 loc) · 9.02 KB
/
circular_pocket.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/local/bin/python
"""
Circular Pocket G-Code Generator.
This source is taken and modified from the
Counterbore G-Code Generator
Version 1.3
Copyright (C) <2008> <John Thornton>
It is being used with permission from John Thornton for inclusion in the HeeksCNC project.
"""
from math import *
import os
class CircularPocket():
def __init__(self):
self.g_code = ''
self.block_number = int(10)
# The write() method simply aggregates the resultant GCode string data into
# one place.
def write( self, s ):
self.g_code = self.g_code + ('N%d ' % self.block_number)
self.block_number = self.block_number + 10
self.g_code = self.g_code + s
# The GeneratePath() method generates the GCode necessary to mill the circular
# pocket with the parameters passed in. The resultant GCode is returned as a
# string return status. (from self.g_code)
def GeneratePath( self,
x = None, # Mandatory
y = None, # Mandatory
ToolDiameter = None, # Mandatory
HoleDiameter = None, # Mandatory
ClearanceHeight = None, # Mandatory
StartHeight = None, # Mandatory
MaterialTop = None, # Mandatory
FeedRate = None, # Mandatory
SpindleRPM = None, # Optional. Adds 'M3' (spingle ON) if it's given
HoleDepth = None, # Mandatory
DepthOfCut = None, # Optional. Defaults to quarter of the tool diameter if not specified.
StepOver = None # Optional. Defaults to quarter of tool diameter if not specified.
):
if (ToolDiameter == None):
raise ParameterError('Entry Missing', 'Please Enter a Tool Diameter!')
return
if (HoleDiameter == None):
raise ParameterError('Entry Missing',\
'Please Enter a Hole Diameter!\nOr select one from the list.')
return
if ToolDiameter >= HoleDiameter:
raise ParameterError('Entry Error', \
'Tool Diameter Larger than\n or Equal to Hole Diameter!\
\nPlease use a smaller tool.')
return
if (x == None) or (y == None):
raise ParameterError('Entry Missing',\
'Please Press Enter from the Y Center\nto add an entry to the list.')
return
self.HoleRadius = HoleDiameter/2
self.FinishPathDiameter = HoleDiameter - ToolDiameter
self.FinishPathRadius = self.FinishPathDiameter/2
# Max Depth of Cut
if (DepthOfCut == None):
self.MaxCutDepth = ToolDiameter/4
else:
self.MaxCutDepth = float(DepthOfCut)
# Depth of each cut
if HoleDepth > self.MaxCutDepth:
self.NumberOfCuts = int(ceil(HoleDepth/self.MaxCutDepth))
self.CutDepth = HoleDepth / self.NumberOfCuts
else:
self.CutDepth = HoleDepth
self.NumberOfCuts = 1
# Spiral Depth of Cut
self.SpiralDepth = self.CutDepth / 4
self.NumberOfSpirals = 4
# Stepover
if (StepOver == None):
StepOver = ToolDiameter * .75
StepOver = self.FinishPathDiameter / \
int(ceil(self.FinishPathDiameter / StepOver))
self.ArcCenterOffset = StepOver / 8
# Number of Circles
self.NumberOfCircles = int(self.FinishPathDiameter/StepOver)-1
# generate tool paths
self.write( '(Socket Head Cap Screw Counterbore, Diameter = %.4f, Depth = %.4f )\n'\
%(HoleDiameter, HoleDepth))
self.write( '(Number of Cuts %d, Depth of Cut %.4f)\n' \
%(self.NumberOfCuts, self.CutDepth))
self.write( '(Tool Diameter = %.4f)\n' %ToolDiameter)
if (SpindleRPM != None):
self.write( 'F%.1f S%d\n' %(FeedRate, int(SpindleRPM)))
else:
self.write( 'F%.1f\n' %(FeedRate))
self.XCenter = float(x)
self.YCenter = float(y)
self.write( '(Hole Center X%.4f Y%.4f)\n' \
%(self.XCenter, self.YCenter))
# raise to clearance height
self.write( 'G0 Z%.4f\n' %(ClearanceHeight))
if ToolDiameter <= self.HoleRadius:
# go to start position at 12 o'clock
if (SpindleRPM != None):
self.write( 'G0 X%.4f Y%.4f M3\n'\
%(self.XCenter, self.YCenter+StepOver))
else:
self.write( 'G0 X%.4f Y%.4f\n'\
%(self.XCenter, self.YCenter+StepOver))
# go to start height
self.write( 'G1 Z%.4f\n' %(StartHeight))
# spiral down to material top
self.write( 'G3 X%.4f Y%.4f Z%.4f J%.4f\n' \
%(self.XCenter, self.YCenter+StepOver,\
MaterialTop, - StepOver))
self.CurrentZ = MaterialTop
for n in range(0,self.NumberOfCuts):
# spiral down to cut depth
self.write( '(spiral down)\n')
for n in range(0,self.NumberOfSpirals):
self.write( 'G3 X%.4f Y%.4f Z%.4f J%.4f\n' \
%(self.XCenter, self.YCenter+StepOver,\
self.CurrentZ-self.SpiralDepth, - StepOver))
self.CurrentZ = self.CurrentZ - self.SpiralDepth
# spiral out to max cut diameter
self.write( '(spiral out)\n')
# cypher destination of each arc end point
self.XMinus = self.XCenter - (StepOver + (self.ArcCenterOffset*2))
self.YMinus = self.YCenter - (StepOver + (self.ArcCenterOffset*4))
self.XPlus = self.XCenter + (StepOver + (self.ArcCenterOffset*6))
self.YPlus = self.YCenter + (StepOver*2)
for n in range(1,(self.NumberOfCircles-1)):
# 1st arc
self.write( 'G3 X%.4f Y%.4f I%.4f J%.4f\n' \
%(self.XMinus, (self.YCenter),
-self.ArcCenterOffset, \
-(self.ArcCenterOffset+(StepOver*n))))
self.XMinus = self.XMinus - StepOver
# 2nd arc
self.write( 'G3 X%.4f Y%.4f I%.4f J%.4f\n' \
%(self.XCenter, (self.YMinus),
(self.ArcCenterOffset*3)+(StepOver*n), \
-self.ArcCenterOffset))
self.YMinus = self.YMinus - StepOver
# 3rd arc
self.write( 'G3 X%.4f Y%.4f I%.4f J%.4f\n' \
%(self.XPlus, (self.YCenter),
self.ArcCenterOffset, \
(self.ArcCenterOffset*5)+(StepOver*n)))
self.XPlus = self.XPlus + StepOver
# 4th arc
self.write( 'G3 X%.4f Y%.4f I%.4f J%.4f\n' \
%(self.XCenter, (self.YPlus),
-((self.ArcCenterOffset*7)+(StepOver*n)),\
self.ArcCenterOffset))
self.YPlus = self.YPlus + StepOver
# clean up circle
self.write( 'G3 X%.4f Y%.4f J%.4f\n' \
%(self.XCenter, (self.YPlus-StepOver), \
-(StepOver+(StepOver*n))))
# if n < self.NumberOfCuts:
# go back to start positions
self.write( 'G1 X%.4f Y%.4f\n' \
%(self.XCenter, self.YCenter+StepOver))
elif ToolDiameter > self.HoleRadius:
# start at 12 o'clock and spiral down to final depth
self.Offset = HoleDiameter - ToolDiameter
self.ArcRadius = self.Offset/2
self.StartPositionY = self.YCenter - (self.Offset/2)
self.ArcRadius = self.Offset/2
# go to start position
self.write( 'G0 X%.4f Y%.4f\n' \
%(self.XCenter,self.StartPositionY))
# go to start height
self.write( 'G1 Z%.4f\n' %(StartHeight))
# spiral down
self.write( '(spiral down)\n')
self.NextZPosition = self.CutDepth
for n in range(0,self.NumberOfCuts):
self.write( 'G3 X%.4f Y%.4f Z%.4f J%.4f\n' \
%(self.XCenter,self.StartPositionY \
,-(self.NextZPosition), self.ArcRadius))
self.NextZPosition = self.NextZPosition + self.CutDepth
# clean up circle
self.write( '(clean up hole)\n')
self.write( 'G3 X%.4f Y%.4f J%.4f\n' \
%(self.XCenter, self.StartPositionY, \
self.FinishPathRadius))
# return to center
self.write( 'G1 X%.4f Y%.4f\n' %(self.XCenter, self.YCenter))
# return to safe Z height
if (SpindleRPM != None):
self.write( 'G0 Z%.4f M5\n' %(ClearanceHeight))
else:
self.write( 'G0 Z%.4f M5\n' %(ClearanceHeight))
self.write( '(end of Socket Head Cap Screw Counterbore)\n')
return((self.g_code, self.block_number))
pocket = CircularPocket()