forked from rtqichen/beta-tcvae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdisentanglement_metrics.py
241 lines (186 loc) · 8.47 KB
/
disentanglement_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import math
import os
import torch
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.autograd import Variable
import lib.utils as utils
from metric_helpers.loader import load_model_and_dataset
from metric_helpers.mi_metric import compute_metric_shapes, compute_metric_faces
def estimate_entropies(qz_samples, qz_params, q_dist, n_samples=10000, weights=None):
"""Computes the term:
E_{p(x)} E_{q(z|x)} [-log q(z)]
and
E_{p(x)} E_{q(z_j|x)} [-log q(z_j)]
where q(z) = 1/N sum_n=1^N q(z|x_n).
Assumes samples are from q(z|x) for *all* x in the dataset.
Assumes that q(z|x) is factorial ie. q(z|x) = prod_j q(z_j|x).
Computes numerically stable NLL:
- log q(z) = log N - logsumexp_n=1^N log q(z|x_n)
Inputs:
-------
qz_samples (K, N) Variable
qz_params (N, K, nparams) Variable
weights (N) Variable
"""
# Only take a sample subset of the samples
if weights is None:
qz_samples = qz_samples.index_select(1, Variable(torch.randperm(qz_samples.size(1))[:n_samples].cuda()))
else:
sample_inds = torch.multinomial(weights, n_samples, replacement=True)
qz_samples = qz_samples.index_select(1, sample_inds)
K, S = qz_samples.size()
N, _, nparams = qz_params.size()
assert(nparams == q_dist.nparams)
assert(K == qz_params.size(1))
if weights is None:
weights = -math.log(N)
else:
weights = torch.log(weights.view(N, 1, 1) / weights.sum())
entropies = torch.zeros(K).cuda()
pbar = tqdm(total=S)
k = 0
while k < S:
batch_size = min(10, S - k)
logqz_i = q_dist.log_density(
qz_samples.view(1, K, S).expand(N, K, S)[:, :, k:k + batch_size],
qz_params.view(N, K, 1, nparams).expand(N, K, S, nparams)[:, :, k:k + batch_size])
k += batch_size
# computes - log q(z_i) summed over minibatch
entropies += - utils.logsumexp(logqz_i + weights, dim=0, keepdim=False).data.sum(1)
pbar.update(batch_size)
pbar.close()
entropies /= S
return entropies
def mutual_info_metric_shapes(vae, shapes_dataset):
dataset_loader = DataLoader(shapes_dataset, batch_size=1000, num_workers=1, shuffle=False)
N = len(dataset_loader.dataset) # number of data samples
K = vae.z_dim # number of latent variables
nparams = vae.q_dist.nparams
vae.eval()
print('Computing q(z|x) distributions.')
qz_params = torch.Tensor(N, K, nparams)
n = 0
for xs in dataset_loader:
batch_size = xs.size(0)
xs = Variable(xs.view(batch_size, 1, 64, 64).cuda(), volatile=True)
qz_params[n:n + batch_size] = vae.encoder.forward(xs).view(batch_size, vae.z_dim, nparams).data
n += batch_size
qz_params = Variable(qz_params.view(3, 6, 40, 32, 32, K, nparams).cuda())
qz_samples = vae.q_dist.sample(params=qz_params)
print('Estimating marginal entropies.')
# marginal entropies
marginal_entropies = estimate_entropies(
qz_samples.view(N, K).transpose(0, 1),
qz_params.view(N, K, nparams),
vae.q_dist)
marginal_entropies = marginal_entropies.cpu()
cond_entropies = torch.zeros(4, K)
print('Estimating conditional entropies for scale.')
for i in range(6):
qz_samples_scale = qz_samples[:, i, :, :, :, :].contiguous()
qz_params_scale = qz_params[:, i, :, :, :, :].contiguous()
cond_entropies_i = estimate_entropies(
qz_samples_scale.view(N // 6, K).transpose(0, 1),
qz_params_scale.view(N // 6, K, nparams),
vae.q_dist)
cond_entropies[0] += cond_entropies_i.cpu() / 6
print('Estimating conditional entropies for orientation.')
for i in range(40):
qz_samples_scale = qz_samples[:, :, i, :, :, :].contiguous()
qz_params_scale = qz_params[:, :, i, :, :, :].contiguous()
cond_entropies_i = estimate_entropies(
qz_samples_scale.view(N // 40, K).transpose(0, 1),
qz_params_scale.view(N // 40, K, nparams),
vae.q_dist)
cond_entropies[1] += cond_entropies_i.cpu() / 40
print('Estimating conditional entropies for pos x.')
for i in range(32):
qz_samples_scale = qz_samples[:, :, :, i, :, :].contiguous()
qz_params_scale = qz_params[:, :, :, i, :, :].contiguous()
cond_entropies_i = estimate_entropies(
qz_samples_scale.view(N // 32, K).transpose(0, 1),
qz_params_scale.view(N // 32, K, nparams),
vae.q_dist)
cond_entropies[2] += cond_entropies_i.cpu() / 32
print('Estimating conditional entropies for pox y.')
for i in range(32):
qz_samples_scale = qz_samples[:, :, :, :, i, :].contiguous()
qz_params_scale = qz_params[:, :, :, :, i, :].contiguous()
cond_entropies_i = estimate_entropies(
qz_samples_scale.view(N // 32, K).transpose(0, 1),
qz_params_scale.view(N // 32, K, nparams),
vae.q_dist)
cond_entropies[3] += cond_entropies_i.cpu() / 32
metric = compute_metric_shapes(marginal_entropies, cond_entropies)
return metric, marginal_entropies, cond_entropies
def mutual_info_metric_faces(vae, shapes_dataset):
dataset_loader = DataLoader(shapes_dataset, batch_size=1000, num_workers=1, shuffle=False)
N = len(dataset_loader.dataset) # number of data samples
K = vae.z_dim # number of latent variables
nparams = vae.q_dist.nparams
vae.eval()
print('Computing q(z|x) distributions.')
qz_params = torch.Tensor(N, K, nparams)
n = 0
for xs in dataset_loader:
batch_size = xs.size(0)
xs = Variable(xs.view(batch_size, 1, 64, 64).cuda(), volatile=True)
qz_params[n:n + batch_size] = vae.encoder.forward(xs).view(batch_size, vae.z_dim, nparams).data
n += batch_size
qz_params = Variable(qz_params.view(50, 21, 11, 11, K, nparams).cuda())
qz_samples = vae.q_dist.sample(params=qz_params)
print('Estimating marginal entropies.')
# marginal entropies
marginal_entropies = estimate_entropies(
qz_samples.view(N, K).transpose(0, 1),
qz_params.view(N, K, nparams),
vae.q_dist)
marginal_entropies = marginal_entropies.cpu()
cond_entropies = torch.zeros(3, K)
print('Estimating conditional entropies for azimuth.')
for i in range(21):
qz_samples_pose_az = qz_samples[:, i, :, :, :].contiguous()
qz_params_pose_az = qz_params[:, i, :, :, :].contiguous()
cond_entropies_i = estimate_entropies(
qz_samples_pose_az.view(N // 21, K).transpose(0, 1),
qz_params_pose_az.view(N // 21, K, nparams),
vae.q_dist)
cond_entropies[0] += cond_entropies_i.cpu() / 21
print('Estimating conditional entropies for elevation.')
for i in range(11):
qz_samples_pose_el = qz_samples[:, :, i, :, :].contiguous()
qz_params_pose_el = qz_params[:, :, i, :, :].contiguous()
cond_entropies_i = estimate_entropies(
qz_samples_pose_el.view(N // 11, K).transpose(0, 1),
qz_params_pose_el.view(N // 11, K, nparams),
vae.q_dist)
cond_entropies[1] += cond_entropies_i.cpu() / 11
print('Estimating conditional entropies for lighting.')
for i in range(11):
qz_samples_lighting = qz_samples[:, :, :, i, :].contiguous()
qz_params_lighting = qz_params[:, :, :, i, :].contiguous()
cond_entropies_i = estimate_entropies(
qz_samples_lighting.view(N // 11, K).transpose(0, 1),
qz_params_lighting.view(N // 11, K, nparams),
vae.q_dist)
cond_entropies[2] += cond_entropies_i.cpu() / 11
metric = compute_metric_faces(marginal_entropies, cond_entropies)
return metric, marginal_entropies, cond_entropies
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--checkpt', required=True)
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--save', type=str, default='.')
args = parser.parse_args()
if args.gpu != 0:
torch.cuda.set_device(args.gpu)
vae, dataset, cpargs = load_model_and_dataset(args.checkpt)
metric, marginal_entropies, cond_entropies = eval('mutual_info_metric_' + cpargs.dataset)(vae, dataset)
torch.save({
'metric': metric,
'marginal_entropies': marginal_entropies,
'cond_entropies': cond_entropies,
}, os.path.join(args.save, 'disentanglement_metric.pth'))
print('MIG: {:.2f}'.format(metric))