-
Notifications
You must be signed in to change notification settings - Fork 2
/
PCA+Kmeasn.py
264 lines (205 loc) · 7.98 KB
/
PCA+Kmeasn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 23 15:03:05 2019
@author: MSI
"""
# basic moudle
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.image as mpimg
import math as mt
# seaborn moudle
import seaborn as sns
# os moudle
import os
# sklearn moudle
from sklearn.metrics import r2_score
from sklearn.preprocessing import *
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.cluster import KMeans
from sklearn.cluster import spectral_clustering
from sklearn.cluster import DBSCAN
from sklearn import cluster, datasets, mixture
from sklearn.cluster import Birch
from sklearn.cluster.bicluster import SpectralCoclustering
from sklearn.cluster.bicluster import SpectralBiclustering
from sklearn import metrics
from sklearn.metrics import pairwise_distances
from sklearn.metrics import davies_bouldin_score
# 数据读取
a1_name = './data/raw_data/a1.csv'
a2_name = './data/raw_data/a2.csv'
a3_name = './data/raw_data/a3.csv'
a1_all = np.array(pd.read_csv(a1_name, encoding='gbk', header=None))
a2_all = np.array(pd.read_csv(a2_name, encoding='gbk', header=None))
a3_all = np.array(pd.read_csv(a3_name, encoding='gbk', header=None))
x1 = np.load('./data/sport_data/xuan_rank1.npy')
x2 = np.load('./data/sport_data/xuan_rank2.npy')
x3 = np.load('./data/sport_data/xuan_rank3.npy')
# 运动片段截取
def cut_sport(x1, a1_all):
a1 = np.zeros([x1.shape[0], a1_all.shape[1]])
for i in range(x1.shape[0]):
a1[i, :] = a1_all[x1[i, 0], :]
return a1
a11 = cut_sport(x1, a1_all)
a22 = cut_sport(x2, a2_all)
a33 = cut_sport(x3, a3_all)
a_all = np.vstack((a11, a22, a33))
# 网络输出属性
a_net = np.load('./data/net_data/a.npy')
a = np.hstack((a_net, a_all))
# PCA降维
pca = PCA() #保留所有成分
pca.fit(a)
pca_cp = pca.components_ #返回模型的各个特征向量
pca_vr = pca.explained_variance_ratio_ #返回各个成分各自的方差百分比(也称贡献率)
print(pca_vr)
# =============================================================================
# pca = PCA(n_components=3) #保留所有成分
# pca.fit(a)
# pca_a = pca.transform(a)
# tsne_a = pca_a
# =============================================================================
# T-SNE降维
tsne = TSNE(n_components=3, verbose=1, n_iter=2000)
tsne.fit_transform(a)
tsne_a = tsne.embedding_
# 数据预处理
tsne_a = scale(tsne_a)
# 数据聚类
ncluster = 6
# kmean比较合适
km = KMeans(n_clusters=ncluster, verbose=0, init='random', n_init=100)
labels_kmean = km.fit_predict(tsne_a)
center = km.cluster_centers_
# =============================================================================
# # SpectralCoclustering可行
# model = SpectralCoclustering(n_clusters=ncluster, random_state=0)
# model.fit(tsne_a)
# labels_scc = model.row_labels_
# =============================================================================
# 画图
fig = plt.figure(1, figsize=(15, 15))
ax = Axes3D(fig)
ax.scatter(tsne_a[:, 0], tsne_a[:, 1], tsne_a[:, 2], c=labels_kmean)
plt.show()
print(max(labels_kmean))
print(min(labels_kmean))
# =============================================================================
# fig = plt.figure(2, figsize=(15, 15))
# ax = Axes3D(fig)
# ax.scatter(tsne_a[:, 0], tsne_a[:, 1], tsne_a[:, 2], c=labels_scc)
# plt.show()
# print(max(labels_scc))
# print(min(labels_scc))
# =============================================================================
# 寻找代表
def cent(a, b, j1=0.005, j2=0.05):
k = 0
k_list = []
print('################')
for i in range(a.shape[0]):
if (abs(a[i, 0] - b[0]) < j1) & (abs(a[i, 1] - b[1]) < j2):
k = k + 1
print(a[i, 0] - b[0], a[i, 1] - b[1])
print('0--', i, k)
k_list.append(i)
return np.array(k_list), k
c = np.ones([ncluster, 200]) * 9999
c_num = np.zeros(ncluster)
jj = np.array([[0.05, 0.05], [0.05, 0.05], [0.08, 0.08], [0.08, 0.08], [0.08, 0.08], [0.08, 0.08]])
for i in range(ncluster):
c1, k1 = cent(tsne_a, center[i, :], j1=jj[i, 0], j2=jj[i, 1])
for j in range(len(c1)):
c[i, j] = c1[j]
c_num[i] = k1
# 运动片段拼接
data1 = np.load('./data/sport_data/data_batch1.npy')
data2 = np.load('./data/sport_data/data_batch2.npy')
data3 = np.load('./data/sport_data/data_batch3.npy')
def xsp(num, data1=data1, data2=data2, data3=data3):
if (num <= (data1.shape[0]-1)):
p1 = data1[num]
if (num > (data1.shape[0]-1)) & (num <= (data1.shape[0]+data2.shape[0]-1)):
p1 = data2[num - data1.shape[0]]
if (num > (data1.shape[0]+data2.shape[0]-1)):
p1 = data3[num - data1.shape[0] - data2.shape[0]]
print(len(p1))
return p1
# 片段选取
p = []
for i in range(ncluster):
print('######### 第' + str(i+1) +'类簇, 有' + str(int(c_num[i])) + '个代表点#########')
for j in range(int(c_num[i])):
p.append(xsp(int(c[i, j])))
# 评价函数
def valuate(xx):
print('平均速度: ', np.mean(xx), '平均速度差: ', np.mean(xx)-24.8584)
print('速度标准差: ', np.std(xx, ddof=1), '速度标准差: ', np.std(xx, ddof=1)-14.2750)
k = 0
for i in range(len(xx)):
if xx[i] < 0.0001:
k = k+1
print('怠速比: ', k/len(xx), '怠速比差: ', k/len(xx)-0.2332)
return [abs((np.mean(xx)-24.8584)/24.8584), abs((np.std(xx, ddof=1)-14.2750)/14.2750), abs((k/len(xx)-0.2332)/0.2332)]
# 片段组合
val_cha = []
val_cha_x = []
length = []
pc = []
x = []
for i1 in range(int(c_num[0])):
num1 = 0
for i2 in range(int(c_num[1])):
num2 = int(c_num[0])
for i3 in range(int(c_num[2])):
num3 = num2 + int(c_num[1])
for i4 in range(int(c_num[3])):
num4 = num3 + int(c_num[2])
for i5 in range(int(c_num[4])):
num5 = num4 + int(c_num[3])
for i6 in range(int(c_num[5])):
num6 = num5 + int(c_num[4])
xx = np.hstack((p[i1+num1], p[i2+num2], p[i3+num3], p[i4+num4], p[i5+num5], p[i6+num6]))
print('################')
cha = valuate(xx)
if (len(xx) >= 1200) & (len(xx) <= 1300):
x.append(xx)
val_cha_x.append(cha)
val_cha.append(cha)
print('组合片段长度为:', len(xx), '排列组合为: '+ str([i1, i2, i3, i4, i5, i6]))
length.append(len(xx))
pc.append([i1, i2, i3, i4, i5, i6])
print('################')
val_cha = np.array(val_cha)
val_cha_x = np.array(val_cha_x)
length = np.array(length)
plt.figure(2, figsize=(30, 5))
plt.plot(val_cha)
plt.figure(3, figsize=(30, 5))
plt.plot(length)
plt.figure(4, figsize=(30, 5))
plt.plot(val_cha)
plt.plot(1200/length)
# =============================================================================
# np.save('./data/result_data/x.npy', x)
# np.save('./data/result_data/kmean_labels.npy', labels_kmean)
# np.save('./data/result_data/kmean_centers.npy', center)
# np.save('./data/result_data/representation_centers.npy', p)
# np.save('./data/result_data/representation_centers_num.npy', c_num)
#
# a_net = pd.DataFrame(a_net)
# x = pd.DataFrame(x)
# pca_vr = pd.DataFrame(pca_vr)
# a_net.to_csv('./data/result_data/a_net.csv', index=None, header=None)
# x.to_csv('./data/result_data/x.csv', index=None, header=None)
# pca_vr.to_csv('./data/result_data/pca_vr.csv', index=None, header=None)
# =============================================================================
k = 0
plt.figure(4, figsize=(30, 5))
plt.plot(data1[k])