-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.py
115 lines (84 loc) · 3.41 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
import torch.nn as nn
import segmentation_models_pytorch as smp
def double_conv(in_c, out_c):
conv = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3),
nn.ReLU(inplace=True),
nn.Conv2d(out_c, out_c, kernel_size=3),
nn.ReLU(inplace=True)
)
return conv
def crop_img(tensor, target_tensor):
target_size = target_tensor.size()[2]
tensor_size = tensor.size()[2]
delta = tensor_size - target_size
delta = delta // 2
return tensor[:, :, delta:tensor_size-delta, delta:tensor_size-delta]
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
self.max_pool_2x2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down_conv_1 = double_conv(3, 64)
self.down_conv_2 = double_conv(64, 128)
self.down_conv_3 = double_conv(128, 256)
self.down_conv_4 = double_conv(256, 512)
self.down_conv_5 = double_conv(512, 1024)
self.up_trans_1 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=2, stride=2)
self.up_conv_1 = double_conv(1024, 512)
self.up_trans_2 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=2, stride=2)
self.up_conv_2 = double_conv(512, 256)
self.up_trans_3 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=2, stride=2)
self.up_conv_3 = double_conv(256, 128)
self.up_trans_4 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=2, stride=2)
self.up_conv_4 = double_conv(128, 64)
self.out = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1)
def forward(self, image):
# encoder
x1 = self.down_conv_1(image)
x2 = self.max_pool_2x2(x1)
x3 = self.down_conv_2(x2)
x4 = self.max_pool_2x2(x3)
x5 = self.down_conv_3(x4)
x6 = self.max_pool_2x2(x5)
x7 = self.down_conv_4(x6)
x8 = self.max_pool_2x2(x7)
x9 = self.down_conv_5(x8)
# decoder
x = self.up_trans_1(x9)
y = crop_img(x7, x)
x = self.up_conv_1(torch.cat([x, y], 1))
x = self.up_trans_2(x)
y = crop_img(x5, x)
x = self.up_conv_2(torch.cat([x, y], 1))
x = self.up_trans_3(x)
y = crop_img(x3, x)
x = self.up_conv_3(torch.cat([x, y], 1))
x = self.up_trans_4(x)
y = crop_img(x1, x)
x = self.up_conv_4(torch.cat([x, y], 1))
x = self.out(x)
# print(x.size()) # check the output size
return x
model = smp.Unet(
encoder_name="resnet18",
encoder_weights="imagenet",
in_channels=3,
classes=1,
)
class UNet_Pretrained(nn.Module):
def __init__(self):
super(UNet_Pretrained, self).__init__()
self.model = model
def forward(self, image):
output = self.model(image)
return output
if __name__ == "__main__":
print("Testing base UNET")
image = torch.rand((2, 3, 572, 572)) # random image
model = UNet()
print(model(image))
print("Testing ResUNET")
image = torch.rand((2, 3, 576, 576)) # random image
model_2 = UNet_Pretrained()
print(model_2(image))