Skip to content

Latest commit

 

History

History
177 lines (130 loc) · 6.22 KB

README.md

File metadata and controls

177 lines (130 loc) · 6.22 KB

Automated File Exploration System

view - Documentation

Automated exploration of files with structured data on them (csv, txt, Excel) in a folder structure to extract metadata and potential usage of information.

If you have a bunch of sctructured data in plain files, this library is for you.

Installation

pip install -q git+https://github.com/darenasc/auto-fes.git
pip install -q ydata_profiling sweetviz # to make profiling tools work

How to use it

Command line

afes --help

afes explore --help
afes explore <PATH_TO_FILES_TO_EXPLORE>

afes generate --help
afes generate <PATH_TO_FILES_TO_EXPLORE> # or
afes generate <PATH_TO_FILES_TO_EXPLORE> <OUTPUT_FILE_WITH_CODE>

afes profile --help
afes profile <PATH_TO_FILES_TO_EXPLORE> # or
afes profile <PATH_TO_FILES_TO_EXPLORE> <OUTPUTS_PATH_FOR_REPORTS> # or
afes profile <PATH_TO_FILES_TO_EXPLORE> <OUTPUTS_PATH_FOR_REPORTS> <PROFILE_TOOL> # 'ydata-profiling' or 'sweetviz'

Python scripts and notebooks

from afes import afe

# Path to folder with files to be explored
TARGET_FOLDER = "<PATH_TO_FILES_TO_EXPLORE>"
OUTPUT_FOLDER = "<PATH_TO_OUTPUTS>"

# Run exploration on the files
df_files = afe.explore_files(TARGET_FOLDER)

# Generate pandas code to load the files
afe.generate_code(df_files)

# Run profiling on each file
afe.profile_files(df_files, profile_tool="ydata-profiling", output_path=OUTPUT_FOLDER)
afe.profile_files(df_files, profile_tool="sweetviz", output_path=OUTPUT_FOLDER)

What can you do with AFES

  • Explore
  • Generate code
  • Profile
flowchart LR
    Explore --> Generate
    Explore --> Profile
    Generate --> PandasCode
    Profile --> ydata-profile@{ shape: doc }
    Profile --> sweetviz@{ shape: doc }
Loading

Explore

from afes import afe

# Path to folder with files to be explored
TARGET_FOLDER = "<PATH_TO_FILES_TO_EXPLORE>"

# Run exploration on the files
df_files = afe.explore_files(TARGET_FOLDER)
df_files

The df_files dataframe will look like the following table, depending on the files you plan to explore.

|      | path                                              | name                     | extension |    size | human_readable |  rows | separator |
| ---: | :------------------------------------------------ | :----------------------- | :-------- | ------: | :------------- | ----: | :-------- |
|    1 | /content/sample_data/auto_mpg.csv                 | auto_mpg                 | .csv      |   20854 | 20.4 KiB       |   399 | comma     |
|    2 | /content/sample_data/car_evaluation.csv           | car_evaluation           | .csv      |   51916 | 50.7 KiB       |  1729 | comma     |
|    3 | /content/sample_data/iris.csv                     | iris                     | .csv      |    4606 | 4.5 KiB        |   151 | comma     |
|    4 | /content/sample_data/wine_quality.csv             | wine_quality             | .csv      |  414831 | 405.1 KiB      |  6498 | comma     |
|    5 | /content/sample_data/california_housing_test.csv  | california_housing_test  | .csv      |  301141 | 294.1 KiB      |  3001 | comma     |
|    6 | /content/sample_data/california_housing_train.csv | california_housing_train | .csv      | 1706430 | 1.6 MiB        | 17001 | comma     |

Checkout the example.py file and then run it from a terminal with python as the following code, or using a Jupyter notebook.

Generate code

Using the dataframe df_files generated in the explore phase, you can generate working python pandas code to be used.

The function generate_files() will generate python code to load the files using pandas.

from afes import afe

# Path to folder with files to be explored
TARGET_FOLDER = "<PATH_TO_FILES_TO_EXPLORE>"
OUTPUT_FOLDER = "<PATH_TO_OUTPUTS>"

df_files = afe.explore_files(TARGET_FOLDER)
afe.generate_code(df_files)

The generated code will look like this:

### Start of the code ###
import pandas as pd

df_auto_mpg = pd.read_csv('/content/sample_data/auto_mpg.csv', sep = ',')
df_car_evaluation = pd.read_csv('/content/sample_data/car_evaluation.csv', sep = ',')
df_iris = pd.read_csv('/content/sample_data/iris.csv', sep = ',')
df_wine_quality = pd.read_csv('/content/sample_data/wine_quality.csv', sep = ',')
df_california_housing_test = pd.read_csv('/content/sample_data/california_housing_test.csv', sep = ',')
df_california_housing_train = pd.read_csv('/content/sample_data/california_housing_train.csv', sep = ',')

### End of the code ###

"code.txt" has the generated Python code to load the files.

By default the code is printed to the standard output but also written by default to the ./code.txt file.

Note: you can replace the .txt extension by .py to make it a working Python script.

Profile

Using the dataframe df_files generated in the explore phase, the function profile(df_files) will automatically load and profiline the files using ydata-profiling or sweetviz.

# Path to folder with files to be explored
TARGET_FOLDER = "<PATH_TO_FILES_TO_EXPLORE>"
OUTPUT_FOLDER = "<PATH_TO_OUTPUTS>"

# Run exploration on the files
df_files = afe.explore_files(TARGET_FOLDER)

afe.profile_files(df_files, profile_tool="ydata-profiling", output_path=OUTPUT_FOLDER) # or
afe.profile_files(df_files, profile_tool="sweetviz", output_path=OUTPUT_FOLDER)

By default, it will process the files using ydata-profiling by size order starting with the smallest file. It will create the reports and export them in HTML format. It will store the reports in the same directory where the code is running or it save them in a given directory with the output_path = '<YOUR_OUTPUT_PATH>' argument.

Contributing

  • Open an issue to request more
  • functionalities or feedback.