-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
157 lines (117 loc) · 4.84 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from flask_cors import CORS
from flask import request
from flask import Flask, Response
from flask import render_template
import json
import sys
import os
import pandas as pd
import pickle
from datetime import datetime
from utils.utils import TextProcessor
from models.distance import DistanceModel
from recommender.predictor import Predictor, Formatter
from preprocessors.queproc import QueProc
from preprocessors.proproc import ProProc
pd.set_option('display.max_columns', 100, 'display.width', 1024)
# Set oath to data
DATA_PATH = 'data'
SAMPLE_PATH = 'demo_data'
DUMP_PATH = 'dump'
# init model
model = DistanceModel(que_dim= 34 - 2 + 8 - 2,
que_input_embs=[102, 42], que_output_embs=[2, 2],
pro_dim=42 - 2,
pro_input_embs=[102, 102, 42], pro_output_embs=[2, 2, 2],
inter_dim=20, output_dim=10)
# load weights
model.load_weights(os.path.join(DUMP_PATH, 'model.h5'))
# load dumped data
with open(os.path.join(DUMP_PATH, 'dump.pkl'), 'rb') as file:
d = pickle.load(file)
que_data = d['que_data']
stu_data = d['stu_data']
pro_data = d['pro_data']
que_proc = d['que_proc']
pro_proc = d['pro_proc']
que_to_stu = d['que_to_stu']
pos_pairs = d['pos_pairs']
# init text processor
tp = TextProcessor()
# prepare the data
professionals_sample = pd.read_csv(os.path.join(SAMPLE_PATH, 'pro_sample.csv'))
pro_tags_sample = pd.read_csv(os.path.join(SAMPLE_PATH, 'tag_users_sample.csv'))
answers = pd.read_csv(os.path.join(DATA_PATH, 'answers.csv'))
questions = pd.read_csv(os.path.join(DATA_PATH, 'questions.csv'))
professionals_sample['professionals_date_joined'] = pd.to_datetime(professionals_sample['professionals_date_joined'], infer_datetime_format=True)
answers['answers_date_added'] = pd.to_datetime(answers['answers_date_added'], infer_datetime_format=True)
answers['answers_body'] = answers['answers_body'].apply(tp.process)
questions['questions_date_added'] = pd.to_datetime(questions['questions_date_added'], infer_datetime_format=True)
questions['questions_title'] = questions['questions_title'].apply(tp.process)
questions['questions_body'] = questions['questions_body'].apply(tp.process)
questions['questions_whole'] = questions['questions_title'] + ' ' + questions['questions_body']
pred = Predictor(model, que_data, stu_data, pro_data, que_proc, pro_proc, que_to_stu, pos_pairs)
formatter = Formatter(DATA_PATH)
# init flask server
app = Flask(__name__, static_url_path='', template_folder='views')
CORS(app)
# Routes
@app.route('/')
def index():
return render_template('index.html')
@app.route("/api/question", methods = ['POST'])
def question():
try:
que_dict = {
'questions_id': ['0'],
'questions_author_id': [],
'questions_date_added': [str(datetime.now())],
'questions_title': [],
'questions_body': [],
'questions_tags': []
}
data = request.get_json()
for key, val in data.items():
if key in que_dict and val:
que_dict[key].append(str(val))
for key, val in que_dict.items():
if not val:
return json.dumps([], default=str)
que_df, que_tags = Formatter.convert_que_dict(que_dict)
tmp = pred.find_ques_by_que(que_df, que_tags)
final_df = formatter.get_que(tmp).fillna('')
final_data = final_df.to_dict('records')
return json.dumps(final_data, allow_nan=False)
except Exception as e:
return json.dumps([], default=str)
@app.route("/api/professional", methods = ['POST'])
def professional():
try:
pro_dict = {
'professionals_id': [],
'professionals_location': [],
'professionals_industry': [],
'professionals_headline': [],
'professionals_date_joined': [],
'professionals_subscribed_tags': []
}
data = request.get_json()
pro = professionals_sample[professionals_sample['professionals_id'] == data['professionals_id']]
pro = pro.to_dict('records')[0]
tag = pro_tags_sample[pro_tags_sample['tag_users_user_id'] == data['professionals_id']]
for key, val in pro.items():
if key in pro_dict and val:
pro_dict[key].append(str(val))
pro_dict['professionals_subscribed_tags'].append(' '.join(list(tag['tags_tag_name'])))
for key, val in pro_dict.items():
if not val:
return json.dumps([], default=str)
pro_df, pro_tags = Formatter.convert_pro_dict(pro_dict)
tmp = pred.find_ques_by_pro(pro_df, questions, answers, pro_tags)
final_df = formatter.get_que(tmp).fillna('')
final_data = final_df.to_dict('records')
return json.dumps(final_data, allow_nan=False)
except Exception as e:
return json.dumps([], default=str)
if __name__ == '__main__':
app.run(debug=False, host='0.0.0.0', port = 8000)