diff --git a/README.md b/README.md index 1c0a0acd..029c7f80 100644 --- a/README.md +++ b/README.md @@ -68,7 +68,7 @@ Out of personal preference and need for focus, I geared the original curriculum * The Manga Guide to Linear Algebra [Book ```$19```](http://amzn.to/1n4hM5l) * **Statistics** - * Statistics I [Princeton / Coursera](http://bit.ly/course-princeton-stats) + * Statistics I [Princeton / Coursera](http://bit.ly/course-princeton-stats) * Stats in a Nutshell [Book ```$29```](http://amzn.to/1iMnx2X) * Think Stats: Probability and Statistics for Programmers [Digital](http://bit.ly/ebook-thinkstats) & [Book ```$25```](http://amzn.to/RcVnTf) * Think Bayes [Digital](http://bit.ly/ebook-thinkbayes) & [Book ```$25```](http://amzn.to/1hmy4Cr) @@ -182,22 +182,22 @@ _More Libraries can be found in the ["awesome machine learning"](https://github. * Flexible and powerful data analysis / manipulation library with labeled data structures objects, statistical functions, etc [pandas](http://bit.ly/py-pandas) & Tutorials [Python for Data Analysis / Book](http://amzn.to/Q2pI5I) * **Machine Learning Packages** - * [scikit-learn](http://bit.ly/py-scikit) - Tools for Data Mining & Analysis + * [scikit-learn](http://bit.ly/py-scikit) - Tools for Data Mining & Analysis * **Networks Packages** - * [networkx](http://bit.ly/py-networkx) - Network Modeling & Viz + * [networkx](http://bit.ly/py-networkx) - Network Modeling & Viz * **Statistical Packages** * [PyMC](http://bit.ly/py-pymc) - Bayesian Inference & Markov Chain Monte Carlo sampling toolkit * [Statsmodels](http://bit.ly/py-statsmodel) - Python module that allows users to explore data, estimate statistical models, and perform statistical tests - * [PyMVPA](http://bit.ly/py-mvpa) - Multivariate Pattern Analysis in Python + * [PyMVPA](http://bit.ly/py-mvpa) - Multivariate Pattern Analysis in Python * **Natural Language Processing & Understanding** - * [NLTK](http://bit.ly/py-nltk) - Natural Language Toolkit + * [NLTK](http://bit.ly/py-nltk) - Natural Language Toolkit * [Gensim](http://bit.ly/py-gensim) - Python library for topic modeling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community. * **Live Data Packages** - * [twython](http://bit.ly/py-twython) - Python wrapper for the Twitter API + * [twython](http://bit.ly/py-twython) - Python wrapper for the Twitter API * **Visualization Packages** * [matplotlib](http://bit.ly/matplotlib-docs) - well-integrated with analysis and data manipulation packages like numpy and pandas @@ -225,25 +225,25 @@ _More Libraries can be found in the ["awesome machine learning"](https://github. ### Resources #### Read -* [DataTau](http://bit.ly/datatau) - The "Hacker News" of Data Science +* [DataTau](http://bit.ly/datatau) - The "Hacker News" of Data Science * [Wikipedia](http://bit.ly/1kKg0gD) - The free encyclopedia * [The Signal and The Noise - Nate Silver ```$15```](http://amzn.to/1hoxQoG) - Bestseller Pop Sci * [Zipfian Academy's List of Resources](http://bit.ly/1qoF1We) * [A Software Engineer's Guide to Getting Started with Data Science](http://bit.ly/1jwgV4p) * [Data Scientist Interviews / Metamarkets](http://bit.ly/1r1tJot) * [/r/MachineLearning](http://bit.ly/1uANaEM) +* [Analytics Handbook](https://www.teamleada.com/handbook) - 40+ Data Scientist / CEO / Academics Interviews #### Watch * [The Life of a Data Scientist / Josh Wills](https://www.youtube.com/watch?v=h9vQIPfe2uU) #### Learn * [Metacademy](http://bit.ly/metacademy) - Search for a concept you want to learn -* [Coursera](http://bit.ly/coursera-online-courses) - Online university courses +* [Coursera](http://bit.ly/coursera-online-courses) - Online university courses * [Wolfram Alpha](http://bit.ly/wolframalpha-torus) - The smart number and info cruncher * [Khan Academy](http://bit.ly/khan-academy-lifeinsurance) - High quality, free learning videos *** - ### Notation Non-Open-Source books, courses, and resources are noted with ```$```.