-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
244 lines (183 loc) · 6.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import pygame
import math
import colorspy as colors
from queue import PriorityQueue
WIDTH = 800
WIN = pygame.display.set_mode((WIDTH, WIDTH))
pygame.display.set_caption("Path Finding Algorithm")
# Defining a node in the grid and assigning the values to the node
class Node:
def __init__(self, row, col, width, total_rows):
self.row = row
self.col = col
self.x = row * width
self.y = col * width
self.color = colors.white
self.neighbors = []
self.width = width
self.total_rows = total_rows
def get_position(self):
return self.row, self.col
def is_closed(self):
return self.color == colors.red
def is_open(self):
return self.color == colors.green
def is_barrier(self):
return self.color == colors.black
def is_start(self):
return self.color == colors.purple
def is_end(self):
return self.color == colors.orange
def reset(self):
self.color = colors.white
def make_start(self):
self.color = colors.purple
def make_closed(self):
self.color = colors.red
def make_open(self):
self.color = colors.green
def make_barrier(self):
self.color = colors.black
def make_end(self):
self.color = colors.orange
def make_path(self):
self.color = colors.blue
def draw(self, win):
pygame.draw.rect(win, self.color, (self.x, self.y, self.width, self.width))
def update_neighbors(self, grid):
self.neighbors = []
if self.row < self.total_rows - 1 and not grid[self.row + 1][self.col].is_barrier(): # down a row
self.neighbors.append(grid[self.row + 1][self.col])
if self.row > 0 and not grid[self.row - 1][self.col].is_barrier(): # up a row
self.neighbors.append(grid[self.row - 1][self.col])
if self.col < self.total_rows - 1 and not grid[self.row][self.col + 1].is_barrier(): # right a column
self.neighbors.append(grid[self.row][self.col + 1])
if self.col > 0 and not grid[self.row][self.col - 1].is_barrier(): # left a column
self.neighbors.append(grid[self.row][self.col - 1])
def __lt__(self, other):
return False
def reconstruct_path(came_from, current, draw):
while current in came_from:
current = came_from[current]
current.make_path()
draw()
# Defining the A* algorithm to find the shortest path
def algorithm(draw, grid, start, end):
count = 0
open_set = PriorityQueue() # Priority Queue to store the nodes that are yet to be explored
open_set.put((0, count, start)) # putting the starting node in the priority queue
came_from = {} # Dictionary to store the path
g_score = {node: float("inf") for row in grid for node in row} # Dictionary to store the cost of the path
g_score[start] = 0 # Cost of the path from the starting node to the current node
f_score = {node: float("inf") for row in grid for node in row}
f_score[start] = hueristic(start.get_position(), end.get_position())
open_set_hash = {start}
while not open_set.empty():
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
current = open_set.get()[2]
open_set_hash.remove(current)
if current == end:
reconstruct_path(came_from, end, draw)
end.make_end()
start.make_start()
return True
for neighbor in current.neighbors:
temp_g_score = g_score[current] + 1
if temp_g_score < g_score[neighbor]:
came_from[neighbor] = current
g_score[neighbor] = temp_g_score
f_score[neighbor] = temp_g_score + hueristic(neighbor.get_position(), end.get_position())
if neighbor not in open_set_hash:
count += 1
open_set.put((f_score[neighbor], count, neighbor))
open_set_hash.add(neighbor)
neighbor.make_open()
draw()
if current != start:
current.make_closed()
return False
# Defining the hueristic function using manhanttan distance
def hueristic(p1, p2):
x1, y1 = p1
x2, y2 = p2
return abs(x1 - x2) + abs(y1 - y2)
def make_grid(rows, width):
# Creating a grid of nodes. Width is the width of the entire window
grid = []
gap = width // rows
for i in range(rows):
grid.append([])
for j in range(rows):
node = Node(i, j, gap, rows)
grid[i].append(node)
return grid
# To draw grid lines
def draw_grid(win, rows, width):
gap = width // rows
for i in range(rows):
pygame.draw.line(win, colors.gray, (0, i * gap), (width, i * gap))
for j in range(rows):
pygame.draw.line(win, colors.gray, (j * gap, 0), (j * gap, width))
# Function to draw all the nodes in the grid
def draw(win, grid, rows, width):
win.fill(colors.white)
for row in grid:
for node in row:
node.draw(win)
draw_grid(win, rows, width)
pygame.display.update()
def get_clicked_pos(pos, rows, width):
gap = width // rows
y, x = pos
row = y // gap
col = x // gap
return row, col
def main(win, width):
ROWS = 60
grid = make_grid(ROWS, width)
start = None
end = None
run = True
started = False
while run:
draw(win, grid, ROWS, width)
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
if started:
continue
if pygame.mouse.get_pressed()[0]: # Left mouse button is pressed
pos = pygame.mouse.get_pos()
row, col = get_clicked_pos(pos, ROWS, width)
node = grid[row][col]
if not start and node != end:
start = node
start.make_start()
elif not end and node != start:
end = node
end.make_end()
elif node != start and node != end:
node.make_barrier()
elif pygame.mouse.get_pressed()[2]: # Right mouse button is pressed
pos = pygame.mouse.get_pos()
row, col = get_clicked_pos(pos, ROWS, width)
node = grid[row][col]
node.reset()
if node == start:
start = None
elif node == end:
end = None
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_SPACE and start and end:
for row in grid:
for node in row:
node.update_neighbors(grid)
algorithm(lambda: draw(win, grid, ROWS, width), grid, start, end)
if event.key == pygame.K_c:
start = None
end = None
grid = make_grid(ROWS, width)
pygame.quit()
main(WIN, WIDTH)