-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathtrain.py
178 lines (143 loc) · 5.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import copy
import math
import os
import pickle as pkl
import sys
import time
import numpy as np
import dmc2gym
import hydra
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
from logger import Logger
from replay_buffer import ReplayBuffer
from video import VideoRecorder
torch.backends.cudnn.benchmark = True
def make_env(cfg):
"""Helper function to create dm_control environment"""
if cfg.env == 'ball_in_cup_catch':
domain_name = 'ball_in_cup'
task_name = 'catch'
elif cfg.env == 'point_mass_easy':
domain_name = 'point_mass'
task_name = 'easy'
else:
domain_name = cfg.env.split('_')[0]
task_name = '_'.join(cfg.env.split('_')[1:])
# per dreamer: https://github.com/danijar/dreamer/blob/02f0210f5991c7710826ca7881f19c64a012290c/wrappers.py#L26
camera_id = 2 if domain_name == 'quadruped' else 0
env = dmc2gym.make(domain_name=domain_name,
task_name=task_name,
seed=cfg.seed,
visualize_reward=False,
from_pixels=True,
height=cfg.image_size,
width=cfg.image_size,
frame_skip=cfg.action_repeat,
camera_id=camera_id)
env = utils.FrameStack(env, k=cfg.frame_stack)
env.seed(cfg.seed)
assert env.action_space.low.min() >= -1
assert env.action_space.high.max() <= 1
return env
class Workspace(object):
def __init__(self, cfg):
self.work_dir = os.getcwd()
print(f'workspace: {self.work_dir}')
self.cfg = cfg
self.logger = Logger(self.work_dir,
save_tb=cfg.log_save_tb,
log_frequency=cfg.log_frequency_step,
agent=cfg.agent.name,
action_repeat=cfg.action_repeat)
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
self.env = make_env(cfg)
cfg.agent.params.obs_shape = self.env.observation_space.shape
cfg.agent.params.action_shape = self.env.action_space.shape
cfg.agent.params.action_range = [
float(self.env.action_space.low.min()),
float(self.env.action_space.high.max())
]
self.agent = hydra.utils.instantiate(cfg.agent)
self.replay_buffer = ReplayBuffer(self.env.observation_space.shape,
self.env.action_space.shape,
cfg.replay_buffer_capacity,
self.cfg.image_pad, self.device)
self.video_recorder = VideoRecorder(
self.work_dir if cfg.save_video else None)
self.step = 0
def evaluate(self):
average_episode_reward = 0
for episode in range(self.cfg.num_eval_episodes):
obs = self.env.reset()
self.video_recorder.init(enabled=(episode == 0))
done = False
episode_reward = 0
episode_step = 0
while not done:
with utils.eval_mode(self.agent):
action = self.agent.act(obs, sample=False)
obs, reward, done, info = self.env.step(action)
self.video_recorder.record(self.env)
episode_reward += reward
episode_step += 1
average_episode_reward += episode_reward
self.video_recorder.save(f'{self.step}.mp4')
average_episode_reward /= self.cfg.num_eval_episodes
self.logger.log('eval/episode_reward', average_episode_reward,
self.step)
self.logger.dump(self.step)
def run(self):
episode, episode_reward, episode_step, done = 0, 0, 1, True
start_time = time.time()
while self.step < self.cfg.num_train_steps:
if done:
if self.step > 0:
self.logger.log('train/duration',
time.time() - start_time, self.step)
start_time = time.time()
self.logger.dump(
self.step, save=(self.step > self.cfg.num_seed_steps))
# evaluate agent periodically
if self.step % self.cfg.eval_frequency == 0:
self.logger.log('eval/episode', episode, self.step)
self.evaluate()
self.logger.log('train/episode_reward', episode_reward,
self.step)
obs = self.env.reset()
done = False
episode_reward = 0
episode_step = 0
episode += 1
self.logger.log('train/episode', episode, self.step)
# sample action for data collection
if self.step < self.cfg.num_seed_steps:
action = self.env.action_space.sample()
else:
with utils.eval_mode(self.agent):
action = self.agent.act(obs, sample=True)
# run training update
if self.step >= self.cfg.num_seed_steps:
for _ in range(self.cfg.num_train_iters):
self.agent.update(self.replay_buffer, self.logger,
self.step)
next_obs, reward, done, info = self.env.step(action)
# allow infinite bootstrap
done = float(done)
done_no_max = 0 if episode_step + 1 == self.env._max_episode_steps else done
episode_reward += reward
self.replay_buffer.add(obs, action, reward, next_obs, done,
done_no_max)
obs = next_obs
episode_step += 1
self.step += 1
@hydra.main(config_path='config.yaml', strict=True)
def main(cfg):
from train import Workspace as W
workspace = W(cfg)
workspace.run()
if __name__ == '__main__':
main()