forked from brianhigh/get_pa_csv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshow_locations.R
executable file
·86 lines (74 loc) · 3.17 KB
/
show_locations.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Plot a map of a selection of PurpleAir sensor locations.
# This script uses ggmap. Here is the citation:
#
# D. Kahle and H. Wickham. ggmap: Spatial Visualization with ggplot2. The R
# Journal, 5(1), 144-161. URL
# http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
# Clear workspace of all objects and unload all extra (non-base) packages.
rm(list = ls(all = TRUE))
if (!is.null(sessionInfo()$otherPkgs)) {
res <- suppressWarnings(
lapply(paste("package:", names(sessionInfo()$otherPkgs), sep = ""),
detach,
character.only = TRUE, unload = TRUE, force = TRUE
)
)
}
# Load packages.
if (!suppressPackageStartupMessages(require(pacman))) {
install.packages("pacman", repos = "http://cran.us.r-project.org")
}
pacman::p_load(here, readr, dplyr, tidyr, maps, stringr, ggmap, ggrepel)
# Initialize variables
data_dir <- here("data")
images_dir <- here("images")
sensor_info_path <- here(data_dir, "sensor_info.csv")
most_recent_path <- here("data", "most_recent.csv")
# Create images folder
dir.create(images_dir, showWarnings = FALSE, recursive = TRUE)
# Get PurpleAir sensor information
if (file.exists(sensor_info_path)) {
sensor_info <- read_csv(sensor_info_path, show_col_types = FALSE) %>%
mutate(location_type =
factor(location_type, labels = c('Outdoor', 'Indoor'))) %>%
mutate(label =
paste0(sensor_index, ": ",
str_remove(str_replace_all(name, '_', ' '),
'^(?:Indoor )?MV Clean Air Ambassador ?@ '),
' (', location_type, ')'))
} else {
stop(paste0("Can't read ", sensor_info_path, "!"))
}
# Get PurpleAir most recent data
if (file.exists(most_recent_path)) {
most_recent <- read_csv(most_recent_path, col_types = 'nTnnn',
show_col_types = FALSE,
locale = locale(tz = Sys.timezone()))
} else {
stop(paste0("Can't read ", most_recent_path, "!"))
}
# Merge datasets
sensor_info <- sensor_info %>% left_join(most_recent, by = c('sensor_index'))
sensor_info <- sensor_info %>%
mutate(label = paste0(label, '\npm2.5_atm_a = ', round(pm2.5_atm_a)))
most_recent_time_stamp <- max(sensor_info$time_stamp)
# Create bounding box.
bbox <- make_bbox(longitude, latitude, sensor_info, f = .4)
# Plot map.
stamen_basemap <- get_stamenmap(bbox, zoom = 10, maptype = "terrain")
g <- ggmap(ggmap = stamen_basemap) +
geom_jitter(mapping = aes(x = longitude, y = latitude), data = sensor_info,
color = 'red', size = 2, alpha = 0.5, width = 0.008) +
geom_label_repel(data = sensor_info,
mapping = aes(x = longitude, y = latitude, label = label),
size = 1.75, vjust = .5, hjust = .5) +
theme_void() +
labs(x = NULL, y = NULL, fill = NULL,
title = "PurpleAir Sensor Locations",
subtitle = paste("Most recent data as of:",
format(most_recent_time_stamp, "%a %b %d %X %Y %Z"))) +
theme(plot.title = element_text(size = 10),
plot.subtitle = element_text(size = 8))
# Save the map as a JPG file.
image_path <- here(images_dir, "sensor_map.jpg")
ggsave(filename = image_path, width = 8, height = 13.5, scale = 0.5)