-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathplot.py
119 lines (110 loc) · 2.51 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import numpy as np
import cv2
from plotbbox import plotBBox
def draw_bboxes(img, bboxes, classes_table, color_table):
h, w = img.shape[:2]
for box in bboxes:
xmin, ymin, xmax, ymax = box[:4]
xmin *= w
xmax *= w
ymin *= h
ymax *= h
confidence = box[4]
class_idx = int(box[5])
plotBBox(img,
int(xmin), int(ymin), int(xmax), int(ymax),
color=color_table[class_idx], thickness=2,
label=classes_table[class_idx]+f"{confidence:.3f}", font_scale=40) # plot bounding box on img
return img
# coco classes table
classes_table = {0: "person",
1: "bicycle",
2: "car",
3: "motorcycle",
4: "airplane",
5: "bus",
6: "train",
7: "truck",
8: "boat",
9: "traffic light",
10: "fire hydrant",
11: "stop sign",
12: "parking meter",
13: "bench",
14: "bird",
15: "cat",
16: "dog",
17: "horse",
18: "sheep",
19: "cow",
20: "elephant",
21: "bear",
22: "zebra",
23: "giraffe",
24: "backpack",
25: "umbrella",
26: "handbag",
27: "tie",
28: "suitcase",
29: "frisbee",
30: "skis",
31: "snowboard",
32: "sports ball",
33: "kite",
34: "baseball bat",
35: "baseball glove",
36: "skateboard",
37: "surfboard",
38: "tennis racket",
39: "bottle",
40: "wine glass",
41: "cup",
42: "fork",
43: "knife",
44: "spoon",
45: "bowl",
46: "banana",
47: "apple",
48: "sandwich",
49: "orange",
50: "broccoli",
51: "carrot",
52: "hot dog",
53: "pizza",
54: "donut",
55: "cake",
56: "chair",
57: "couch",
58: "potted plant",
59: "bed",
60: "dining table",
61: "toilet",
62: "tv",
63: "laptop",
64: "mouse",
65: "remote",
66: "keyboard",
67: "cell phone",
68: "microwave",
69: "oven",
70: "toaster",
71: "sink",
72: "refrigerator",
73: "book",
74: "clock",
75: "vase",
76: "scissors",
77: "teddy bear",
78: "hair drier",
79: "toothbrush"}
color_table = {}
for cls in classes_table:
color_table[cls] = (np.random.randint(100, 255), np.random.randint(100, 255), np.random.randint(100, 255))
img = cv2.imread('img.jpg', cv2.IMREAD_COLOR)
h, w = img.shape[:2]
boxes = np.loadtxt('boxes.txt', delimiter=' ')
boxes_nms = np.loadtxt('boxes_nms.txt', delimiter=' ')
img_with_boxes = draw_bboxes(img.copy(), boxes, classes_table, color_table)
img_with_boxes_nms = draw_bboxes(img.copy(), boxes_nms, classes_table, color_table)
cv2.imwrite('img_with_boxes.jpg', img_with_boxes)
cv2.imwrite('img_with_boxes_nms.jpg', img_with_boxes_nms)