-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclustering.py
52 lines (44 loc) · 1.62 KB
/
clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pickle
from sentence_transformers import SentenceTransformer
from sklearn.cluster import KMeans
import utils
import argparse
parser = argparse.ArgumentParser(
description="Cluster dataset for diversity using k-means on sentence embeddings."
)
parser._action_groups.pop()
required = parser.add_argument_group("Required Arguments")
optional = parser.add_argument_group("Optional Arguments")
required.add_argument(
"--dataset",
help="The dataset for which to cluster.",
required=True,
)
required.add_argument(
"--num_clusters",
help="The number of clusters to split the dataset into.",
required=True,
type=int,
)
optional.add_argument(
"--output_name",
help="Optional filename for the clustering pickle.",
default="dataset",
)
args = parser.parse_args()
dataset = utils.jload(args.dataset)
embed_sentences = [
f'Instruction: {(sample["instruction"].strip() + " " + sample["input"].strip()).strip()} Response: {sample["output"].strip()}'
for sample in dataset
]
print("Generating embeddings, this step might take a while, please wait...")
model = SentenceTransformer("all-MiniLM-L6-v2")
model.max_seq_length = 256
embeddings = model.encode(embed_sentences)
print("Embeddings generated, starting clustering...")
kmeans = KMeans(n_clusters=args.num_clusters, random_state=42, n_init="auto", verbose=1).fit(embeddings)
output = [{'embed_sentence': s, 'cluster_num': l} for s,l in zip(embed_sentences, kmeans.labels_)]
print(output[9])
print("Clustering finished!")
with open(f'clustering/{args.output_name}-clustering.pkl', "wb") as fOut:
pickle.dump(output, fOut, protocol=pickle.HIGHEST_PROTOCOL)