-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExpIntegralEi.nb
11531 lines (11079 loc) · 380 KB
/
ExpIntegralEi.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 6.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 388924, 11521]
NotebookOptionsPosition[ 314260, 9865]
NotebookOutlinePosition[ 368906, 10982]
CellTagsIndexPosition[ 368863, 10979]
WindowFrame->Normal
ContainsDynamic->False*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[GridBox[{
{
ButtonBox[Cell[GraphicsData["CompressedBitmap", "\<\
eJyFmwd8VNW6xdc+09JImcwkoffea5TeQ+i9SgtFELGBAioPpMMFARGkF7EA
AtIVRRFRUbFdEVRUqgW9TwWBkJ639t7nnCkJ9/H7fTmTM2cmk8x/1vrWtzc9
Rk+dMG7y6KkTx4yukPbY6EcmTBwzpULnhx/jKYcAsJ+VVAHydiFvml+88ivi
IXja4XAgIiICJUqUQHx8PLxer/o+NjYWPp9PHaOjoxEXF6eO8vt4bxwS/V6D
F8djARK8JeD38aEJJZCc5EVSkg/+2BgkxXiQwmNKfCxKJcShtM+LMvy+HK8v
l5KI8mWSUTEpAZX4fRWvB1W9Majmj0d1XyRq+qJRKzkadZKAuqVKoF6KBw1S
HGiYEodGJUugSVkvmpaNQ7My0biHdW/ZWLQo50PLcn60Lh+FthVKoG3FOLSv
GImOlZLQuXI80ip70KVqIrpWjUX3qqXQo5ofPasno08NP/rUL4t+Nf0YULsU
BtYuh8F1vBhStzSG1Y3D8CaVMaJ+MkY1SEFGw4rIaFQS4xqXxPjGPtzfuAwm
Nk3CpKbxeLBZLB5KjcLDqcl49N5oTGmehKnNo/BEiwRMa5GE6a38eKqVD0+1
TsTMNomY1daHZ9r5MIc1r50f8zv4sLCjD4s6+rGY9a/OSVja2Y9n05KwoksS
Vnbx47mufjzf1Y3V3Qys6S6wtofAeh439AQ29hTY3EtgS29gW2+BF/sA2/sI
vNxX4JV+Aq+ydvZnDRB4baDAHlmDgNcHCewbLLB/iMAB1qGhrGECR1hv3Cfw
JuvocIG3WG+PEDjGemekwHFZowTeY51gvT9a4CTrgwyBDzOEgY/GCDhxil8/
HssaJ/DJODL3KW+QPvlvCxkU6pb8Km8akklZBuBkVapUCa+88gq2bt2Kbdu2
YcWKFejYsSOiXFC8TpvxBF56ZTtefnk7Dh7cj5GjhiEhUsAbCSRGAT5WlSqV
MHHi/di8eSOfYwu2b9+G559/DgMH9kfZkokoFydQgS+oUeO6eHrmNKx8bimW
r1iCZ5cvxtJ/LcDixc/w+iVo1qwO+vVLx9q1z2Lp0nl4dtkijBjaC01KudG0
NJDKuqduWTz9xANYzcdveOF5LJk3VcHYvm1jPs8sPs9SLFkyB1s3PY81zy3E
muXzsfrZRdjywmo8/tAE9K5BIGsKwpiASWOHYsO6pdi4dim2rn8WC2dNxaxp
D2LdqoXYvmUV1jy/EBlt6mFsIyemTOiLVzetwrNzniCMKZjcTODR0V2wdcMi
bFvP69fNxtTBrQijC9NbJmBGyyTCmKhg/B8JYxsfZrfVMM5t78cCwrjAhHFJ
Jw3jsjQfYfRjuYQx3Y9V6RJGD2F04IVuhJEgriOQG3oAm0wYt8oihC8SyJcI
4kv9QBihYNwxIADjbhPIvRaMrAME8eBQDWQIjPcVhfFdE0gF4+gAjCc1jPiQ
FEoeLRo/YRkaRS2HKUEICuJnsIRCsF+/figsLERmZqY6ZmVlYc2aNYjyeNC4
cWOc++4sCgrzcefObd6fj1d3bEeF8qU1gqzx48fi9OlPDD7BLcSoS3JysvDP
P9f5VJk4fGQf2rZrQQIduH9CBn797TKvyUFO7m1kZd80kJeTiydw6+YNjMkY
gdXPr0BebjYKCwrVPW8eeo0AOtDMBLB3lxb47dI5FObfQX52Jv789Ue0bdEI
u3e+xKfNtV/l1Ys/4sCeXerc7Zu3eH0hzn//LWbPno7Bg7tj6tQH8MP5s8jJ
v4W8/Nu4k3kD2zavw/vH30JBfhYfl4Vr/7mCJx4aQwBL8fxuvqYs5N25gelT
hlMN+ebs38Jf4Za6tjDvL6xYNIUAxmBayzjMaBWrAHxaAtjaVMMgAOe39ykI
QwDsHARgFwtAJ1Z3FVRDKADXE74NhG9jL5hqSAAtNewbUMMd/cES2KUABAEE
1VAUq4aHLQCHhQHIOjYyCMBwNcyw1bAIgJ+NJ4TjpRzebzPoUTpohMmgizV3
7lxKqaTPhSNHjiAhIQHDhg3Dzdv/IK8glyjL99SF90++i2ZNG5I9gZEjhqp3
W98XjYKCPOTl5ajvZOXn56p3/9THJ1G9RmX07dcTf/znV+QXZKvH5BoKMgcK
8vIxbmwG1q1dw+/kOS9e3roeTUpGoGkpgdQyAl073oMrF87y3lz15Gf//QUW
L1qAP679rl52fn6+QvjpaVOQXr8Ofv71Kn9QocFPTiF/s5y8O8gtuIPMrNvy
DKHn6Uj16w3r0gEvbt+MrJw76uytrGxMm/owxvVsi//8eUW91ELUwp69Wwld
aRzcsw25PCOvvX79GqZOGkboYjG9hZ+qF4snW8Vr6EwLtlRvngndQhO6xRK6
ThI6bcHLQyzYgTWE7gWpeAo6oaCzVG9LL8uCRagF96ctSslLUdztLsaBD8oa
ioDoFcccRe/dEWHMjQ5xYENB59LIjQ0gJ2kTQbpnKNlzFfHdvXv3yvdavTny
vfvuu+/Qrl07zJw501BqV80Wspu3/kaL5s3gjfbg639/bp+XRylwFy78iMuX
Lyr5k+csBhcsmIdx48bg6tXLik3Jozzevn1biyOVY8DA3li/YbXiVD82Dztf
2UbFi6LlRlL1POjUrhl+vfoj0cuTL9jAtWvXMB7ZuTnqheZRCA/t38H2z4X0
KonYuetFjX9eoSaTuN/OvK5v85wEsqCgAKc+OoFh9ZKxcN5TSo/lj751Oxsr
li7GtGmTtKgV6Oe4dOkbPDi8J068cwg5hfo5fv75PB23Ex5vzvaP3M1oGU32
fHi6VYA9u/0rwl4SBS+Z7V+Sbv/SJHs+sufT7HULYs9q/8jdJpO9rRQ7xZ4S
PNjtn3TcXQNgCh7ddmCQ4A2GFrwhQe2fhG+YhA8h8AW3fyeKwldE8E4F6DPh
S1SCVyKs5zPgdDrx+eefK+YKzXdCHv/66y+sXr0aO3fuhAJQq1oCb+bg3nua
YNTIYbhx/X9tuqTyrVy5HA0a1EN6ehpef32Poks+mXwrP/30U8ybN49v3SVT
QjzqNiMUevTsgn79u6N2XTafOzYRkUx1TQ4/MxcvnMeB/bvx8ovrMHRgN3RN
a42z33ypX6wpOzkFxE6iR0Ru3PgF6Z2bEj8wfQBTHxtHr82U2prPT9jVSz/g
2NFD+PXKZfkjyF8U787HvJmPM3z4MHn8QBRm3+A9/GBcz8S+13bgxPGDkj4t
zy3ZBfyFjWsW4ItTxxXwEswzX51g9qhqCl884UtgqxenhG8ma3Y4fB2Kwrcs
LSlI+BKxqmuigm+1Cd9aE8ANFL9A9hDYpuALZI+XtfCFZI/dgyz4EGj3TPgO
h2cPqXwjbPgMJXvOQLenzdZQbuvR+En0xoaiR69FSPaIVNkXZtNncWgo/WMe
qFABv/zyi4lGBAUtB9nZ2Uqcrly5gt9//11hZHqbvqwk2rRpgzlz5uDmzZvI
zcskOVk4/8NZMMqiZAmBUiUMdE5rRyH5W71X+YV5qn9ct2Etrv3xmzqXm5+D
r7/5N2owt9b0O1HLbzAHx2Dfvr3qp2jPjOKPL9ACRJBWr1iGNs1T8f3Zb2xR
kh1dQV6hfmk9kZtdgL27XkNarQroUgXo2r4ufvv5Igpy9aWnPnofQwZ1w8cn
j5M4DfNff/+GIX3aUwe9GE7Q//nzdyXFBYXZbCDP4Z/rt/kyCum3BRp63v7h
+wv47ep58xOcheNHdxLFeKIYSR2Mt5PH06191EGf9mCFop8xOMls/PxmDPbR
g1PowSWJYjJjcLLWwfQYoihU4/eC2fip5GHHYGbLXrrx22bq4EtBMXiHhaJp
wnuLa/wUivxrSxbjiw8eI8KCx937PkPC6MBpUkjRkv8cAf6UD8vY4VEa2Lp1
a/0GmlJ19epVnD171vRjzaJk8O+//7Y1MiMjA8uXL8eff/6pejf2e1+f+QIp
ibEoGQNy50S37mm49vvPNnffnf8WW7ZtxpWfL2tJhRtnzn6Nhg2ro6Yvgty5
UIfxeM/enZqhSlrgKLA//3IJv1+7in8teobi1gZfffmpbdE52bfxzdkvFTsF
6pxGdPP65eSOnWLVSLz26kaJpkJVXreFafbChXOKQ3n9kYO7MLSeHL+4MLx+
JVy7elE9t5a3TP1yWuInPuTnX35S38kPZ0HBLfMPl4NXt60idl5iF4VprBmt
4vBk61KB1q+NlTf8evrSXk9fFisF1NgtTdPYLVfYUQEldulC2e8aUwHX24FX
5w2FnNX6qcAbOn3ZZStgIG+8Tuu1er+QvBE6fTEUdJ5i8i5s7AwFnhMfZQQk
kL1fCHkxVDlD3ZLMydvSfWXXJyOFJE5+dmXcPXz4MNavX6//3lHq9IULF9Qg
5syZM+qshHHx4sWYMmUK223ZRlEMs7Pv0OHnzn0GdevWRsuWzbFjxyshzd+p
Ux8qe7548ScziOTj22/PomnT2hQ9hxa9kj4Jn7pPv4QYfHz6Azw6dRIeeGAU
WrVqjA4d7sW5c5+RjCxk593GH/97ET16tcOylXOQmX1ddwmt8NVnJ5FO9+1a
VeCRB4Yi906m+kXlwy5e+RY3M/82NTMfs2ZMxpA6HoqeE/fVj8dXpz9Uv7l0
9lySJRvL/LwsbN20FCfe3WMKYiEymZIl0LnsfefPmsLGLxmPt/CSPqbdljGk
z6f9127+EgOzv/bWuMWn026nkvTfINFLT2TzF61FrxsUgYFxS8B/g+kzlOQl
msEDgeYvSPT2Dpb+C1v0LAJ184cisz9Dwee+m+pZ9IUZsEmf9t1Ee+anVJAa
aPV/Ho9H5gu757tx4wZmzZqFMWPGqO9zc7WavP32UZI6BCdPnjDDbSRJPYgW
Le7F+fPf2VhasvDVV18p/TTMAG2Fk1WrVuL++8cpBvXzlMcXX3yGZo1rUQAF
avvdqJ3sxf59u/WbrNrHfHxx5kssWDQX8xfMxsSJozFy5CB89/0ZpXay7bt+
43fMnjsdx99/Q7WnBUqS8nH64+OmAgp0b9UAP5w7o16nSimFMsRLxJrhGgPT
4PTmGFKXn8i6AsPrRWD3ji3qeWSyzZJNAo+/XPoREwZ1xOY1cwlejnp0VqHu
m7OZnB8bN4wSmEwJjCOECWb69YakX1sCzSZQj1x8Ov3KBJKWoiUwzU8IvXTe
KAWhSiASQkpfsPPKBGyNXMKc11AzlwStgAMC477Xg0d+IQqIQPo1GTymekBp
l5LA6KIMho38TgXF3xAKYwMUBnd/vOHkUaYMSaH82EsKpbumpqbK2xoiBzZt
2qDE7dixt0x4UhRIFSqUoxY+agN4584dG2jrqFujXHz2+cdo0TIVvft0V5MX
rSQ5hOkbNGlYgxDK7s+J2knRMnM41AV+xcGtTD3G+/bc15g96ynFvU68hXYD
qEJ1YYHtwAvmPMEIIiiE5K9aMl7aslELFhtJh3pkXRzatQ2D66RQACV7oPtG
YxEfJ3+y7PCyzZjzyYl3cX+TUnhy8n3Iu3WDKbtQ3VfI5vWPXy7isT4dyV4K
BTCe7MWb4z6v6vpmsma18evJS3vJXpLq+Baa1rukU6IOIJ1T1LhvBTu+lenx
tF+PKYDB4z4pSpK80rrrM7nTkxcEuj7V8SEUvmLTbzGjl2IWPwyFXlRxo5dA
2zfWhs9kT4/53HC73brrM71XTl0uX76s2YpUIWPQoEFqMe7UqVP21FkuYpQq
lYI33zyimsF8Sm2nTh2QGB2JhQvnM7Bc1acjbE9VuvPpRxg/bjQqxBsYN3YU
7mT+o3tENy5TQlo1b4wavkhFWp2kOLxxZL8Oux7SIZuqQpugSz9+j7mznsaV
Cz+ZapqEQjM/ZGdlKpoKcnJx9NB+5oyypuUC3ap5MOXB8cjJ1BZZmF+gXx2f
c8bDY0icG0PrauLuqxeFR8YPlU9/Cx3V50Fedmjndkxo7MLETg1w7adv1bk8
NYK5hfNff4gpHZsQuCQCl6jny/aoj8DJmGEvcPgxl8BpsZMxIwFLOnpN4JIJ
nI/AJRK4WIqdOxAzlOOiiOPq1TaEjPpk4t1RTMzQiheaeA8W1+9Z45YRRWZ9
hpK6iJCY8cGYoGlLCG9a66ra/V74Kptc9ZWTPtnnHThwAJs3b2b73xARTrDD
ekCd3717N6pWq4jYuCg8+dQTOHxkPw4c3Iu3j72BHj3T7VU2eXv7S1vw8Scf
4PRnp/AFM8F7J45hwcI5aNqkAcrHudUqW6+eXbHj1e3k5+23jmASNm54ATXK
l2TXZ9BxZdfnxdzZM+jyB/EOf8ZbRw/h6JsH2Wq9gTeYC7auW44x9/XFpnUr
8M5bB3Hs7SN47yiPb+7B++8dUrO+OTNnoFNqfaRVFjrrUvG6VRPokVod2zat
xHvHDuLksQPMpnvw+o61GJRahQxCM1hPqp4DIzul4o19m/Hhyd1qcePE0b2Y
MXk4IRR4oEkkNq6YjY/ePYgPTuzF6ZP7sHX1M5jSvDwhjFWOO71FDFXPZ7Z9
XtNx5eglMWjskmgu+RLCThJCH9s+v4JweZcEho4SVD2n3fa9wFpntn0b1SKH
NW+Wjosgx0VA9azQEQRhSNY1V9kOD7u76r1TnOqFLfkqCjNCFjlCUkeEolDS
J2d8hnlUyYM9oMsg2m7m4VUKvggXEMmKiohAtJuRxS1QgsdYDxAXQbBZCZEI
Web1RwNJ0QLJMXLWYjDzAqVZZWKBsnFQy7zl492oSAgrJ7hQJcFAlUQD1RIj
qH8GS1ADPYQQqJvsQr3kKNRPcaFhSgwalTTQpJShljvkStu9ZVhlBVqwWpZj
ZC8PtKkAtKsg0L4S0LGSC50qO5FG+HTLB3Rn9ajGD0B1oHcNp17mrSUwgDWw
ttAA1hEE0EEAnRhRPwojGzgxugEwphEwrpEb4xuDtksAmwKTmgpMbubAQ6nM
NPc48ei9MXjsXkEFjGURwJbRVEEvVTCWACZQBb0E0MuWz0sAGc+YOea39xLA
RAIYr1RwqQRQrbIlUgUlgDE2gGuC537Wgkev4lNv6J4DhACoer7BocMWC8DD
7PmOhKx4wOz5zGnLKDN3jA6btow24csIkUGr50uEOWIB5hI5va4ry0XiJHUe
VgQr0mlyx9LcweROINbiLiKUuySWnO+lxAiUlEX2SpdwoGysLCeFz0nhc6Fi
ggOVEpyo7HWiqtdB7hyoQf5q+hxml+dC3SQD9VIc5M5J7lxoXNKlVnebmiu8
95C75mVB7kDuQO4E2irugA4VHeTOg86VI9Rel/QqblP4yF11gZ41gD41BPry
2K8W0J81sI7kTpjmK2i+gtwBo8jc6IbkrqEgd4LcCcXdRNakZlDbCzR3gtwJ
PNYcFD5Q+ATbPZA7sN0TeKq1oPAJcmdgdjsDc9sJlkHnNbCQtaijky2fk8Ln
JHsucucmd05y5yB3DrvdC3ffTT3NxY7e5vaCcO76F+WuiPANkYLGZk+P+HzF
BI2gEV8xy2wnw1UvaJ3ttNzpEtTzReh+L2x5NwhBAx6y92BA+SSBLpNAT5jy
RQh7d4HfVD5JYLKizySQ9JVhlYvTBJY3CaxMAquYBFYngdVJXw2VM1yawGQH
lc8kkPQ1kgSWJIGlLQIFlS+YQCpfea18FoGdFIERDBseEujQ1ksCe7EkgX0k
gTVNAmtDETiE9OnAARIoSKCg8gkSCIxVBAITmoAEsjWh8j2oCAQevgd4lBRO
IYWaQNB6BaaTvidbk0LWzDYggYLKJxg4QOsVVD5BCgUJFFjMWtpZlkECHSRQ
kEDB/k8EAoeyXpjzPmm/SvkMJX0u7bx9REje0Eu9nqDVNmDv4GIAZJAtdn9L
CIOwGTQUha6A8wa5riEJVAgWYVAv9cZo+Ez9c5r7C9yG1kDJYJgGGgpBjwbQ
IwEUAeuNFEoCDRov/+wKwBRzmUMCWDZOliWBTlovJdCrJbCKKYESwJpBANYx
AWxQjASmlhbFSKBlvUB7WwIjCWAkrTeCAHqYdj0E0IOe1d20Xjet10UAHbRe
h7LeQUEA3mcDCGQoCbQANCVQWa+UQAQk0AKQ4EkAp1H+prcUCr6nwwGkBCoA
O4DWKwEEez9BCQSWpgkCCBNAmAACa7rClkBrr4EEcFPIBhedeLUE3mWH1d2s
t/iBcxiBhF3i5wxv/QyVPlz2sEUeJXafqb0GQSJo7m8xhVAyaIugIc8rGZTt
35JQE3YFSaDHav4CEqiavyihGAw34TKxmsByFoHKhLUMVlXNXzESmBRKYCOT
wGayygRJYDlJoDAJFGhXkQRWMjSBlUhglUiacCQJjKIERpHAaBIYSQIjacIR
JNCDAbXdNGFHqATWg2nClMCGpgRS/nTzB2XCwRL4iJRA0jfFNOHHpQlLAluB
zZ8ggZYJA8+0kwSyDaIMKgk0CVxsEwgSKGwJXGVLIOyVtgCBgfQhF32DNfDl
YtJHyIbTQcFbrFA0fdgaCL3FKnypbXTIqu+HGQiPwEEIfhasgUIO/+yl3iD+
ZB/odmoNjCiuD/Tw4ZLBucW2gf5oTWBydJAJW20gdVBpYFyAwCqSQK8msIal
gVL/gkzYJrCUqYGlHXqXqW3CItSEJYEVDRpxQAM1gZGawGrR6FUjmgRGUQOj
0J81oFYkNdCNwbVdbAMdjB+G0sCRIW0gzDaQBKr8K1T8eDDVJDBVm7CKH82F
IlDq34yWugXUGmgSSA2U9M0NMWGTQJbWQBKYFkwg7GWPdUG7TEO3HWgK1RCm
nyiafwf+l7VeUwMP/5cNV3fb5BdAUONnIxiigp/fb1ibXpxB42algA6FX5QC
UIaQEPhMAIPCr6HwywiTP+aQGA2flMBSQR2gho+lDNig9DnMDlDCZ6jsK5fc
aqv5n1NnEAlfckD+Glvwhclfq2ADVvCxC6zk1hmE5puuDDiSBhxJ+YtS8tfH
hK9fLQLIGlg7kvIXgSEsveBr2Aas4CN4YxvBNGDdAUoDlvI32ZI/ls4gNODm
Ej5mEJk/wuWvrSV/0oCFacCCBgwF37LOlvxBGfCqrkEdYPdiJ4C6A4wvZq+f
XHILiiBUPr3kFr7ZTylgyD6D4f/PXr8Q/0XwwNmQ3CnwFHkmeJb9BmeQ4O2l
Todpv3iI8ifuJn9hIQShCKoAokOIjaDpwOViJX4O04EtBB3agYlfdTV+0TG4
jt9C0CCC8r98OG0HDta/5mr8YiFoxWChEJTjl86MwGlVPOwBZQhxU//c1D+r
B/Sgb80I6h8duFYEBikEI4lgJBF0U//k+MVhIihUDLYQnKB6QBHWA0oHBntA
hIQQpX+tRKAHJIazLQTbaQde2EEGEJgIAsukA1P3lps9YED/hL3Lfn3RXfaG
EsAInYL7BVrAnQNCxn+GYjC5CIF33eIcNoJ+bxSK3erywZjgDHJqrMXg6fGW
/2rxi7Pbv+AYYo1hlP3aYxhh8ifsMYz23/mKQc2fCJXAMP8tZXWAKgg7TP81
dAdo8Zco+RNKBmtJGZQSmCwUf/VTQvlrZvMHmz9rDGNnkEqgBDoZgt2KwXSb
Pxf5c5n8OXUGqeVG/9oedoCSPw/9lxJYz0P+Iui/bvLnJH8Oc/wHe/wn+bM6
wIAECsWf9F/Nnx7D2B0gS/FH7iR/VgaxQrDij/K3rLP23+VSAtOl/yJ0xbe4
bX+9EFh16wvbf3cU579Mwa8HbzsYau61MrvA4gh8x/Zf3G3DM3QKcQbvepFl
/icPiP8DbCpo4Q==\
\>"], "Graphics",
Evaluatable->False,
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{177, 22},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0, 1}}],
Active->True,
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://www.wolfram.com/"], None},
ButtonNote->"Wolfram Research, Inc."],
ButtonBox[
RowBox[{" ", Cell[GraphicsData["CompressedBitmap", "\<\
eJy9fGeUXNWZ7e7qrJwzkhCYcZ7xG4e3JrwZ+6154/Gzn8eGmbVszwxGUnd1
UOgcJBkJMNhEgwEDDthgohAYi6QcWupUOXRUDkjdCi11TtXd9fb3nXurSgmM
8JoflW+de865Z+9vf+Hcb91RkpO18o6S3GV3LP7nojsKcnKXFS/+P6uL+FVy
EpD0EIDpiyHvo3xrPWXCk52UzCdHCjxOfUp2wOtMRhqfU+DNiT88+kjlzzlp
SDZfZSfBzYd5N5H/ls+A28mj8tLgz8uALz8D7twUuOR7Prx8eLL4cAIuPjL0
2ynwr5qIwGq+FkyDd+VUvp+GwKoJqM92aOvyP3eWtJ2kbXlz7DZSESyamoxA
wQx2K1A4g4+Z+kiR51Q+zXIgUDRLfi2azYPNI0WfxyHEZ1dOsnZDTlQvDzZe
75TOJulJ+JtDz75eP9Zlyc8paCziiUrnwc/XhtK5aGBTDWUL4Cueg1A5vy+b
g3DxDfo5WDGPx85BA78Pl85HsGw+f58HH983lczlqYHa/BQ0OKXtNO1CbZYD
vuxUzh/HmZ+k7RwonAV/yY1oLp6OQMUibbOpeDEOcoByTh+HUp8Hbc+bncmh
pcLnlLYz4Moyc1ifmwy/DDdHrhGPy3PAnz8R3tIFCK6cyTlNQkCOy0mC/w6e
m+ev4/m9+fwPj3evSkOwZCbHtgjNZbPhKbsR4RKOuWQegsVzESqeDW/5ErSU
z2H/FqCx/Ab+zv6VztT58a+ez/ni+Cumsp0ZfJ0Ld+VNOjcBHivzcqh4nL76
V05D7XKek+OqY388ORkIse9B9s/FNSbrolbGsjJZ++nncYGsVB1nDftan52B
+sIpnPOpPP8ctLLP/orZnEP2gf2rLzHXTK5TsHg++zxX39fkT9N1Widt8tGY
lQxzNf6a50/WZSJjCpcuhHfNPC4jzl3lHPjKZvJ63oDAGr4Wz4S/eAHbX8S1
MRdNHFuoXD7PQCPnL8j/ytKrz3XoevYtl/6atR10mvmWaylrISRrfbmMm+N0
ZvKaclHnSo/4f3m/PEnxVMtjAwWZnP8ZaCmTdXYD55pLvHIxAsWzeL14TUrM
9XBVLCH+5Ipl8jrInMzV9Rxivz25KfbS1z7Jq8FAqoGKBQ+BifTPoTNicwJ0
XKGiOSkW1gR/BKL9SI4BdIYC13oIiqc7FPtcFXz2r55qHqvICAWTOELTK6/M
RrZhA+mT1wKvK1tWciZXDdloxQT4+OpfOR6+FZkZekCyEpbHehhqSTXfkfW8
uanmQXLLtI4nL+pv8urQZyXMWBvmGdem0sxrUakyqZev0ny6NjNBR+Th3PmU
OzmSFfx/bpoZ6ZX8aehzHCFMuKyajCAnzbtqCqdwMpfPONRn2ZdKoe/QWYtf
WTd7ECj872LPt2PsWcefQryuwaI5isoGrkgvGURQ0kIEuYsWKpsE+HtjsTDc
LCJmFpoq5/G4WYpeQZwwTZgIC2QbZhIEeXLHw03WEnRI16QbPn4WxpI2G0sX
cZpmERlzyQTz4S6eR2TOVSb2ZqUQ7SnKtp7lhiG9y82Mu5cLE6SjehnbEoTy
sy/XoLKWV1CsgVdYmccGcw0q/GQsGa9YQJ9cdUEpr3iodBZ8JQvIFPN53huV
DQJF04jF6Wjib/6yJfpba+liuDg39WRCeZULE1qzWC2BjDtUzP8WkrUKpur/
fIJ2sk24YD4RvkSZX/oqjOLifAib1C5LUtYXtghabCNML+MILDdsX8Pvwxyn
WAz5PVR8k1opN/vTSLYOls9GY8EsHCmaBw/PK0zXWDoZ4TWz4CmaiqoVqdqW
P3scVy7bXcolkpeE/dIPruSaFUADF1sLGdfHaxssn6Vz10gmDq1mmxx7YO1C
c33FctBKBMpIHbxOMncNfC/rJcw2/eynz2mWnKwyWYYy54GcdIQEcXJ+HlPH
MVdzHdSuNMd42Bd3XjJqnPI5hVhwGMtH3hDLEC5YZOaS5xfL1EjmDAqNFdFi
k1Eby2cb8kxV8lQhIARaOF1R4NDFnhkjT7dlfP87yDPjCvL0r57EAcao2/DA
uDh3Oq1rzfXtWzkBXs6BcKhvxXjiKf3a3JlmvpNpJkkZ7hRCc9h/Uap0Oq6f
PlOvSp8OPc/VZOgkS4YmqQz1sVciQYULffnjjRzl94ZKkwyw1ZBYVDpBOVHG
7ieFqt0RKs1L51wlxdk326hQl0yl/C3ZkHXBFL0ajuvk0z1X5dM6Z5xP7e9l
CgWwHus3OcbPC+ehvAiUU+pQ8tSvpUmvXEJ5NhV7f/RleIusVUoC9JfcZIiT
q1XkW+MTtyH8u2KrtyQcXskaDjr4Q1m1ySonZeD1+UZaujkCbylXOh8CTCGF
ulKRfpQ5z2ej8ZnvE9A3aJ9dbGN77mySikP/X+s0/RbZVifgVYI00sV/h4OE
P4/tzyAxz8WO0htQvTxZCb4+hzaOY/ZSFtewTSFUed9M8mvk2PyFs/WczRyj
l8TS/NIqtLy8Wt+HC2fpb9J27WP/htDvV6P2wW8rCcmchSljgyTSfU/9Oxpf
LkWg8lM8dhoJlST9i39HaNNa7KJ825edpmSv5MG+VJM4t2dNw/4Cyqpy/l/m
KisNNVkEUn4ygktJpksd2HHHJHO9ZNGIpCsTkqetLp2BJhoyMWoukpv0tbFi
jkowkWmBIuMibM+ZYK4VjxX5vnepWQfuHDNvsh4aV99gZC3nwhhHSlnOY0Nx
XIr6iij9SNDhSrocNDh+zq/vkX9F46/+g1KW0p+84aa8DFgGzyfjKluoY/by
WvlpPPY7ObZlqdjG9kXG765YwLE5lOlqcow0D91BFlhqjE51znw1ukKc0l6w
fJEaMHE3XAXz1PgH1dBPM4Q6JaZG5TDxCOsSiNMmVDOdjhhp2oRa5/yz82na
lXxKd5Wk4LA5w9KjHotSjNxKUpXnFx2qj/FKEm5naoxPnVfyqVCk0aFpCZya
YhOk0yEHOpI/jDZTLqfN5BhjJsfOad5N1q66s23WFPHJK5yXqapSWNNP9pRm
1FwImcdZM+bA12ebofpXTqK8EgU6SUyHMclZcdOsst1y3uWfQTr55M3rlaCZ
pLE5eoE9zisp0z6xzhneiVGmK8dQJv0C6piFuoxbVi9QOLaumK0wvHAgiOhA
F7pad6Lq7q9R/0w38Hx1HYb7OzAQGUZ0rBv90UEcr9uId1bON2u0cCGGon2I
RNu5fuepJq0jHUQH2hEZHsShbU+qrm3hSE/u24TRkWEMDfdieCSCs/7N2L1i
ktJRdKAXo4MjnKD5So+nX/g+RkaiiA4NoopesMBxX/HncTK8DX3DPYhGhhAd
HUDf0Qb4Hv+e/i79OdG0B8ORPvSFX0f1UqO/Q28+iF62NTo2SC90GppeK0O0
6xDbH0aE7QydbYT3+ZUIlXHM5dPQcagKY8P8/sAutFJ3CZWEi6aTPmbgYuhN
jIxG4Xk8W6nFy7k8WfV79mVQPU6/M02pwM9FVkPbeuz5XEQ7QhiNjqCf/RqL
9KPlzXXYRYhVidf+yHfQGx3DyFA7dd8C1aaRrnaci0ZxeNuvVcPvXf9/MXQ0
wGO6MXDkHfgKb4ZLNeE8zhf9iie/h+jxo5xvztdAP4Z6WnG6bhMGOccXApt0
jTS8vIzjHUG0/yLc5RKluRm9h95FD8/T11Sl0RuhULk+A2MDaN/zEPXvQhx4
oQwRuQ4jA/C/UI7dhQuU1gPP3IGhoSEMj/ajN9LLMXrVxAlf7S7+BHoCGzkn
/ega47zL9Tq5H3vuv5UmLUUjHJ2eV3hNxtAZ/qNyXzV1biRykX3sxLF376OZ
XoQTr+RipP80BtmO9w/3s48LLA9+nPpRiZwpY3RZQHVZ3iPXv4FCSgyXV6FM
g5BkImvun9F/1wjfinExHk/kzEtIQjlzvOFNlW2ZPC4lw+aqBM702npUffc0
la/6mpNqKUNHTLO61dO/GomOkxfH1Ug046raU1r3GZVrNehW111+V62ZZ/Sm
lx1X3cnP7iyHJRxjYtsmTpkH6bSQpk/nayIvipGAfovTPJZv43Pa/o2DZnP6
tSKfDnlOFm8lVa9fsrl+FnGa7zJ4zGw6QON0geoJ6ACpI2iIM0O/fJO+2Dz1
w5qLRV5QWtBcu8o+h7YTHsXXqSP74S67iX7odLif+AHaiKdTXOPR842IXjhC
fhxBZLANTVW/hVt8Z2Kof2SQ+Dlj/DpOj0i7C4PDxP0w3n/vEa7oz6DJ/Tqx
24Gu0SGMnT2D0aO1GD3sw6ayxXA/9h2MRbswNBCFr/KT6sO1vfgDdI+NYYDY
FJ9ve95c9Ha0kWe6cXGYmAzsx2BXG85HRzEYvahj2vef03E4UMu+RNDv/aP6
vgFKuCOv3UmejZI3+zVK1u1/GYORKEKuFzF0uhnRwQhtwDnlDVfRXEQ6j+jx
0c5WylBK4Iob0VBwM+qeuk15fWCsHxdrf8+JX6wyNDpyHl3DA+gh/1MPaKzC
T0l7fNManBvpJu6jiLQdQv+JegwPk3/ISb01L6q0Euk4Ehmg7WF/Srh+lqej
MxrhuPrQXvUrExup+DTaDu7DEG1U+5Ft5I5P0b7RzlXMpKSdgbHuQ5xr9re3
F2cObsTYiWb0sL0L5MPOll0q48Ib8zhPg7RjUY0wC7e0NdciQi4c8m2iO7FI
I4z9tAsj0X4c3PqQuhId23+KaLSD16cPgS1PIFS+EPVPrCA3DuCMnPNiO1p9
WzAy1oVqiZ9w3ANdp9AWlWvHddG0Cx1dveiLRDBEO7v3J3+vLkKffwvGBqPo
bN6CPavmYfN9/4Qo51DGcWLfSyrVj7xYgN6B88rZja9WoKlwpqHHFF3G4v2o
yhWUG7dNmNFjOSTGZU9WoLqcJiriUFikxJUnAUPgXJMXiTk+Fc508GmG48Pi
maHCyajPsjIcdvzCwrjPaXM33Vjypvrk4o+LEMtOurZPbhhKKMVjNKTtLHuc
8cPTLdL7uFRoTsY/pJq/ujUT5LZErEYx8zKvSocmZmvRIf+VyIdutitCMsC5
8q2aqBFu+dWXFedDj8WHMmfCh2Fx1wqnXT8fhmg4PVS7dpSm3kot1Juwq82H
4uZJow1F8zWGqBql9LM4edxFrI7g4tFdqF3zNbRyoR35Q75id2ToLDy/vBW7
Kv4eYd8fyRX9GG4/rTGy4Jr51AVDqt+ED/1W7DBK7hkjjk7s+BmCD36f65yY
J9+e3XsPtmz4ssakan72bY0jetb9Bfr7z1NHjlE7ziWnil7MUX0zOjqKvbwW
Lc9Rdw2Ost1u7P7xN1F/B1BVuAjdneSzyCjer3pSteGJ0FZi9SK6GzajrsCh
nNj0xloMEucDo11o5tQF6fI1PvR18v58HHzhXgz2sG/RHrz/4lKN4Z7c/BN0
B17DoTfXa1aquXgq6koW4rz7efSRZ0RPRXtOwfOTf8UJatE+jr2b8zTQ066x
QJ/EJ5eloL/rAm1FJ0a9L2oMNyy89MbdtBXUouQcd9lfq3vax/8O8yGuvE/n
rptz3Ivjf3xYtXQLgT9waC9G+0fRfzygcyQxvKp7vozju39OnuO5R/oQevI2
jdVWZ03CUGAXon0nccb9MnzZk3FkUxZ5O4oxcnlLwWxz3qN17McQ+g7u18+S
1RsaG2Z/RnB83280Zl299os4tutptPteg/fRb6uPEW2nbzFGu1C9UTNM4j6H
13KeZIyvraIdoT4c6uS6mq/u/fbivyBvHtP5b9v/Cmqy0nDO8x65uQsdTW9j
b34Kdt37NV0fI9Tdx99+AIF1t6D12Wxq/E4MjY6h6eVisb02H0pUQcx5Q/GM
D+NDbwIYjJufEgtpCmBCH6AT/3Q+9K2eHOND42jGMx3Khwla1ks+9K+YqPrQ
YrUMO4GSwIe27ruMD2P6kMSW+RF5MPkSHnToc3IsiyOC8xIitJVpjAiVDA0R
+vneZJbiwY3LidAl/yfpS2rcu3K8inR3QhDSJkI7PV6fLbPNySz4GMIwxGUh
M2yHT4QVbCL0OWNEKEEaCYhLskESApJGrav8PI4dqyERDuJ8ax12bvgGvGs/
hYPv3oULo+I0dWHvPf9TEwm1rxdgbISA7ItyAbD54gkKRHGuAmunwpOXrvmr
aGSEoOtFw45HcPC9xyl0uMiHI6h58Dvq9NSsWYKm8k/gCInZ9ZPvKhEJIbTS
gatenorwy3fT8SPxDXeiKjcJF72/pZNG0XDMTTdnMppuT0YNHdTGd+5TZ2ts
4BTqVmfiXPO7dE670Rl4D+58Tk52Co5svpdgErLp00TEYY7d9cztOELhNdLd
o/2Pdp2Af+1NOFoyTeNbtRtuUaINVM5DU9kUVD1EoA4MctwRDPa2o3dsFK5X
HsaZA2ESPp3Psz508dX3h7tQs5JO/p3/pIJQhM7Bn/0A1QVGq0sKP0Jx28bv
Q885UXvvv3DsJCgKaUlxS7o8Gu2lAYig9b1fw3PnZyja5uI8nXlxcocaqmgw
p6LxRzfjnXu+i+MH6jQocOqwS5M1oVwBIcXpkzQcdESP+t7m+uV8bVyLocEx
zsEwjc8tJLi/wuDJADqi8t8QAhUL1agN0MgNkghPVD2DA5wLfyEdiYe/AdcD
39CygNAvb8fF0U5eyyjq135SU9zi0TXwGkkCqsG9g45yH4ZP7NF0d0ueMfgH
Nj1BgzlGcj6l8dazdJhlbtqbd2J3Tiaq7vqcEcg0mC1bf0kH4RY0v1xJwd2n
Drj7pTVoLF9kJ2+ECHUpF0yNwctmvli43ehCffY5E9lQsJESO05QQ/T8GdjQ
u2qShtAkox3L0iSwoR2CE8Lw0umU4L84nm453mmxYeYVbCgE5ctJu4QNL8ml
OA1zpVtKMpa+yb4eeky2nk0LSbE2Y/SoLrMGGzOMr59Aj+L3a9DRil2YkTti
KW9V5DIzPC7A2ZJYXr1NpVlWbEECG141WHKole4mO06/fnYMFs/Sc8YiJdZ6
sKqUbHb0FUzRoiCJxIfLZik77i/7LBpb99A9Ifpb3dhW8VnsI2Oe3XY/kTKk
LLW98u9QRSlxeGMOJUCXmvygZHcqJlPeSciuH9WUNGHOaZjyMUrJKYzZtPcX
OLb353TjhjWktnX9t+Fe+3dE2hJU//iLKk/8992qbmM3WbipYo5mYgKvlNAV
69FQZt1ScbN+h4ts7+jhGuOuc6jNZILqN35MGUs2iVzQ0OnJ4E5lm4v+bfo5
TCSeeOt+so2wY0TDVXsfX4qz/b0qmaK0CH1ngpRvlZRJf6Gpaj8lsoxLiohE
Ook7/f7O+8g2lLmunThR8xyGyY4nj1EuDZ/H2PkW7Ke7P9BP2TNwER72L7xm
sUplOU5Stpq6L0jWkFp0+AzHSlbalAs/24729tFVpXUpm4k3/gt838H/tqF1
y4PYteFLqLr7b9B+2svrcA7DB/ayP4twqGIWXBu+iuiRHbweZ3D+yH5lo9r8
NC3E2bzhn3TuTrTuwD5KtWMvr+O89JHJB1FV8kVU3/m/MNBcRVk4iM7DHuqt
aThUOkn7Ozx4Hke3PazFUw28PoGSRfBVfEKt2olXi9SaDHe108ItMKUNXL+1
2akI5U9ARwvnf6gNx47Uan+E7Q/wOjS99jStC+XvSAfqKCu7m/6IAVrYrrAb
VUtpESs+raFZuSYndz6NurVfQsMra8mgEZXlLRsrZN3adUHiMgs7SlbYZkc7
Y2xnYlISdKKJwAszCi5SYnwliCZyPjIzXpnKlvIWiZFJOtuVZeE701JPuJQY
SS1+cZ1z0/XzBO3K+IR6nwQmzLlUG9rOciyRHWdBXA8Nxgp8dBIt9zg/XUk7
rgwz4tQnuRNRpUaX21pMHmn6nBljQOl+QPk/LabfzRTYVitFhy/NBoum0+jP
+DjicKb2M6ZYnUaSW0bJpj+pwpJ1EypepAlNWU11d34FB47W0zj342LwPWz/
8Vexe92XcX7rGhr6LkQooPaXf0rFQeCFHxnRRtiIJ9hSejOGJSpGCnQ9u1or
iCR5OdJzQb8/SBi5fvYtLvt+9PZE0PH2/dj/o7/Eu/d9AS6KDi8h7/odPauR
kxRII9h1D+HOqT/w2x8QRufUS3cvG4cDz+ZgQLIG0fPYuvpmE3Fbmoz+zhPo
6uvHBcKthd+dCRtxMnJ8P/asTsE+Lo8zex9FpKcL0f7T2Hz353B6z1voEY+s
tw1Hfu+Eb83NqL3rW2gtmkgBslgFZNOqmfSo52hUcPsjt2Ko+yguUjSdfbkA
7sf+mR57P8WsiJluHHnrMa3HjLa3EOI9aHv2+6gnBUq0LUIhdeKd53VeVLP/
IgtdEpGMnsWBitk6p5HokAo5D0G3JzeDc0Hx1duF8Hs/x967/xbuOz+PzqPV
6O89RQHfiR0P3krzNR7hdZ/DqRfL1avuHzyHXZVfht+ZoUniMzW/U2o+3foH
1HH9dW9yom+Q/elrQ/1D/4m9P/5/GCPtDfW0IXrKi9qyT2hiu0ecAdLm4e2P
IFi5hEJyIUIFM2mWFuu6qV//NUQ6BylU+3G85im4pWpneTK2F34arh840Pxq
PvtzBn39nWSEBYqDPaTf/tN+msB+0uNW1JAyL7RuQk//OXQf8NH8fgb77/46
hnovUJxewFnPRprGb8L32r3ooJMxGOlE6Hf5UiN5Cf0VzaAvEq/ksUuP5bMr
K05/scIQZ9Il9Kf/yVfk/Bnoz7faqu7j4nWZbIYkYe36apNZMSU5gkGPsmTS
+MRoodNhO6+5Usrtsap25GE7tJ6ELHF6LMl8nd5xYtwxFZeXXKYZ2uNwHEqE
GQkK0IoWiii1lZ14+nH6MyXhKcqkUiIcO8x5Gf2xiSBFotCfX+b6eulPqsFi
9JcQKLyc/vIcmvwMUn1J2bOUfJ969j/QH72A0SH6xl0d9D9rEXjjfjRs/7km
BcVv2172KTQXz0f9y2vUh5WATuB2EIYL6bP2oldg0+7Fgbd+igP7fo8x+UzL
7X5uNXzFi3Gh4S1NTkQjpIftz+Ng+A845Xkdm+75giZQBgk5oaSOtmaceO3H
aHnpXvRKUJ3nEvW3v/STmrTpY5sd55rQ+OZ96Ai/iU76qtGxs3A/cBvCHGp7
y24NuIlSO7DtQbS8+xi6LpxSdXX+8B6E6b8Hnr9Tx3Th9EHUvPU4jm97DHW/
W0F438J5mYT68umkvnmaIPAW3Yim7b9h39mXix3wUK25K6ag84BfEwcDpPV3
N3yXywVoYb87e4YRPeRGtQQE39qgkI/yuNPvPIzGLY+io6tb1Wl3cDNqC9Kx
u/TT6GIbEpyTAO7J1x/XoJgECXsvdKKnxQ//00tx/qBbx3SSCv18+2FS+OMI
vlgGzxNZ6B9o03nqaX8fB1/9KU7vfQojg0P63aHmrVRbaTj6egXOSYCT37UF
dqFx/2ZSqXwew/mOdnQf3MFz7UTP0JD65i4qL0laCyVK8aNPiiJpHsRsHn/z
Xr2OvaMjOFX1SzS+QQo+4UUDl9u+kk8g2nMaZ9nXwdMt8P2mBGcbdmgifpB0
HH7ym6ihqThxZAtOizmhL35gz69wzLtDVaX4y90DnThbtwntJxp0DNHuRux8
4DtorZh7SWFj4XStWbVztLZvXJ/AOMmXUaBRgJY2zIpTYEPJn0MBSnZbKDCw
crxwQyIFxgqbbZ7LFcJR+kmkQDs/4bDSI3xrVS7mpCYoQAcyY1R3vdyXUOuY
mtADPY7y1KHMNy4hU5LAfVotFCc1r819GfqVHS/0OK3tNfGEuqnvTIsrQQ4l
RIfUqL+Z109/UuEoAfJE+quzEvf0UGL0J4U9WhS7RGuaxbm58EoehugUjQ6Z
fGZ35DSO7XkVrW89QiheoGrqwJ51f42q5ZTpr5eQ+s6SYnoQyh6PbQ/9A6nh
DJduFwaP7cJoXzupbxDDfRfR37gJ++773zhYQdp89F9wMbRZQ3TRLrHyg+g9
FcLeB75LqHcopXZFRo3z5f4jjr64ge0OUZEeRZjUUiWz/NT3MHI+pDmZ86RB
OU908CQOPV+E6mW0TlQibZ7n2N5ZUkc3RruPkBpHTf5iYAh1r62n8rwRh5+4
HWcO1GotyxihHu08iB7fc/BVLqICnEW434LwyjnwyI6ZtQtI63sI6UM41/C2
Oufh4gl4f8v9VHqn0Bbchm0ln9dyw12Vn9ecbLS/Ha1UlTtzJuKk+7eIci6E
tqVmKBo5hOHG7aTZT2utU9UD/2hyF5y/LXf9I/rcOw0FRIZxUeZqcABHNq7C
uebdbHcI/T0NGO54nxQ1is6DNdh659/A92IWHej3NYAwONDHc/Sh65iH16kd
7U2b0bwyHQ0vVtIERNA/0o3hUwH2M8IHx9/TCE/NFs7Zac1JRwfPYuhYFeoe
vRUtJdO0TkqcYFmILaVT4Fs/C3t5zjPbX8DQhV6uG5ojPkTp7szNVCfY80gW
enpPs/1O7dNIl1DYCA68sFzrjBqd03Au/B6/v8gxnUK0rVWPk/qm9kNV6DhO
qu9u13UWHbqI01WPwE2l21A+z9BfhlpwKcuvy06OBd0SNsWk2hHB5XYW8krW
E7AQNB+Z9cZdRfgZ1guumhgrYY6VcqfFauvs6mdLdE24gvXSYsLPe4nw88SC
gF6nGW7GxyW/xOhjql2/I46opobTrUqZTH31fzj5xUJ/MfZbbhhQY3u2M6wD
VSa0r4WwX7jQlGb7ij4G+9Wxj7VZ8dSzvZ1FLr4/Lv6kWFmWjq94iSJZKmZC
D38Xh9uOYmxoFCOH9sFL5AbvuRUNxTcj9Fw26p7/EY+bpo6G+oNlcxGuvFF9
rNr8xfA+9A00Fc7Gjvx5qHuhAKe2PYrAayVa9RAuv9nskihbpBVlO4nC3q3F
OFz1JOof+y/UlH8JR7b/Vn2/Qfqs7tcr1XeWfu59+DZs+/m/aThRdkPU56TT
j0rDiWdW4Pjz6xF+aR22lH0S+6UyRpbXCihS6/mdZDZ3rV+MgxuzcHzHT+F/
/Hazr3HNp7Wgt/bpH+Lwuw/i+Ob7cPyXK1C3bqFmxWW/pKdwCfs9DcE1c+Ev
m4LDb6xBmGIo8GgemkvIkGxnT8VNOL7nKfrvtyFAH1YSElIJKZWY7vIb0Sh7
65ymX1vv+jpqNhWj8/kS1FUugOeHqWjKMjtcqu75VzKWhDg7seunX8fWDV/Q
6p1o3wWE3b+G6w85qLrrJvifK1D/L/j0MoQfux2tu1/AkTfX81rM1uzjntVf
weGNxTjyxgbUFy1BrVT+lS/Anru+qLtQwvTpG169E+HX1sD94LfQUvUbnHj3
J6hdsxh77/oqmp75Pt7f+SxCb/0Cgad+CE+ZJIkmqP8rhehyDbXgvFQy7Leo
CJTEWtvGXDS/vB5Vd37G2qVBx5Rifd+qZDQ9extOvrQShzcV4p3KL5iiel4j
9w/Y3/X/oPtOQ6smwLuOfXv3CTRvvVcrsLbd+TUcfeUuCstfo/HVu+Feu0Sr
UmPij6conmGSIllXZT/1g23f15+VSIHG5/JZuUlBDJHz5wj9Ufj5V1HGrJ4Y
j41lxMSPx6541D3CVjlzVowClRmdcfJLQ9olFOi5MiscYz4Vj1qcbdzZdEOS
1sOoRavuxumwYobp8Vpu4Tp1cjNV5AnXOZTl0qxdKZnG0ZW4oOGVKdbYYrke
e88fsSkqTigseHUlFy+blosos00FJlkLf/FsPubS2ZinxS6hohmaDjHnmqXZ
kzCnuLl4IRqJMc+a2diy7hvobA5pZdZQyzt4e8NXNEzfUrJAd6nVrPsCqotu
Qe2yZLOdKTu+vclKTMfKCFbP1CUmBbwOWWMOfTtVl5tbdn5V3mBMbvlNXOt/
j/oX78LYcBfOUbk0UxX4c8ZrU3vIU1JRXJefrHwp1zwmjG27ay1S2UstSWo5
k79k9hTLsstmQKEqr+QkORTZIuvNT7NTbaa1OZbhN/v8JOXqK5ilKeJR6jnZ
WrGPWnBsTDRlJ5rfvYeI+2fdtSx1dh4rkqWnsXZGixWyV2l9jmWgLpXpIm3E
5WKH7c5K5Z20JGe0d0J4nSYO781yxIaeUFVvIrMODdtLAQybUFinSbsOC+Cy
69CVm6HpG1GJsfiRXdvBx0SrcVknoSJZR7J/mJzNC+mXSqBi3bn44QXBE64s
gNNXE82Sbfx2PMdyInVyJtvawWmi5r7Yzoh0S8akx3edJWI4Jznuv119y9n4
xJ+csb1pFsKvsYsi00K2SVymWQomIxbFjyM71SB7ReYlIaypl8E6FjNkGx8V
1kFVpzxAhLMssCIpRpulsJaNz1OsOhI9B/sVkL02XOee0hnYsuar6GnxYmA0
gt6WPdi5/msIUxI083LqNvzSBVqw7cuzKn6SYW8j9mYnxSheK0IKZpld/9bC
SkR1Azsr+xxaafGllr5+7V+h+YV8RC+6qEZOwlM5H76lZsWdfuo/yACL1Jq7
b6dVX5lxBartsOsHoFoitjaqdSN7XurlqJY8llbZWRwhrYinIkEa2QkiKyI6
OIy+sQhaNxbRY75JK8gaaTdbV8+NbfdUVAvCZauLherYjsBLUV3nTLsqqq0t
WmJir4Fql/MDUZ0pbaTEUT1ORyNFXaLkNER9GbKtckYb2LJSFNhcOSLaAmIg
xFAUCthnfjiwMz8Q2O68NLs0NevyPNb1gNvzMcFtEnupim6Dbdvnsbf8p17q
nlguiolNpxtTbW8mXZHopiTFwG2TmNfKwflki1PRjI8EbgGyKiQL3PI+JCgS
QcYra4Pbr5G1NL13hQBYNmNWb/hbdId3aZTjwtE6bN7wLbhK5B4Uk3U3fbhg
JpoLJ8rudJOnyIzFc+J1ZCarJ3sqLXBfxWZXfgIeCVzKfS2KjXGX89Su+Sze
zFmoRURir/pqfo3+AXroZw5gB2e4mSuyZtmVNttjpRIF3VKdfxm6tVpAdlgX
zTe3GpGp4HV1ZVn7FaSNmfpRakAlIS4pAT/5qWd0BOdpp+Wvbq6raOcZjUEd
fm0FZ3W+3klF78TC4dr7aKSOXvchrhxnQTphM3cCngSQYkUlTSTdiuPbtCX4
duUk3jXjEnxf3mS9lhGN1+QguzEuNukJ059p9vc6U+J7Ny4DuLy3ES7LRZZN
UG5XI0vKRniB3BDhT9jLc23TLckoqXlyZccrlPQ2EzHTnZ4Qik0zQtjepJOb
alVOpiQgOy6/rw5sFfOplyDZiljYSPZotbocnGbKnfLSDJpzrWR7fuYHgdku
OYqB2Rnf0inxhWDBFKkfug5LPVvFU7B4njpCwrlStCUS0waz9w7ojWxkKcou
bLkNQd2PPoujW5/QWqDO7vdR++ZjCD/9Xb0Vgt5cqGSh3nKhbqlJOpqlGldT
xgQkKzjN6pmpC1Q+28jWz2LQuEKkNFrALDfCaZUyafbdTeEtHp4km9u2PIDh
iz0YPRZALY1oSG6tsPTaYHbJ6rsSzMJTel8k4S1ynKkvwaVgnhMLo9VS8guY
g6tn0FSPKHiDRQtRzd+6mvZqYLf74FYEX1qLwDM/1JtSiNsuAJTTmDKWmaaq
Ii4kLpksC8seqVQhZqcm4Fh4QLZV22ngGOTiEfmr4ViaSsQx14k93fJItNiB
VeOVzK4GaKu8wsazrBhZOaIXzWbYufoq6+1PstjXxrN31WT2ZKKJMth4diZK
8bRYcNF3KZ4dCYDWrEtCNtnsOXZY1TdxHGsUMdXCsaScEy2yqfWz4pCW3LZx
LNvsfFbgUPEsJjrVxA6tbdZSDCOqO45jO44oiyw5hmPJuAULr1oPeBVHeqY6
zvZsh4XiC6eZSmVFsJxhmgbTZAuHR3bdFyzUW4fUUFF7f7kM0dNuREZke+hR
dO96CNXyPa+gBOSkpsydB7uIJ3F1GtXrUGfDrB2ummR9Oy22qFoL5JYqs/VW
LQbTc/S2KrJN11M8GdXEcZgN7ec5guWfQVUuj1FTKcUVSR8EYfv+XokQtrAV
5tdhrZFIj2/Ut4Exx+zZccptH5J0BC10QSTPEe09pnkhuWNX8Oe3I3L2hJbs
RqPD8Lxwl0FFoSGOGIQ5GE3zL/9ACIvnIhw29TJTLDzky594LQjbnbfHXqf7
G/5kCIsMq7ddZ2ciE9hVUo6JCWQh0xWiVx3WHKsxzbK46NJdH4QtcxyDsKmM
c5vgWAKEU2IJSJ8R246r4dd7OX6tpMAV+DUWN1kDYHZATP6YHPOVcxMMsA3e
vEyr5MNr4KsOs+76Taj5yEIsDhYr7LB2CAcLphG+Mwx8iz4Evub2AelXYFdS
KUr5zjh2dZu6OIWlkqK7WW7zo5ZkW9lfwvv0UrQFN2IssAldrxegtmK+ueFb
4VytlfXkxyKjsTyQvQDY58DqSbp6Uq27XIRUyC5Qd1XgL96v7iiTOzkVTKLc
SFfv2EMzK6Wuckcj2S1UJfdWzLomXN25GVfCNVXhKro2bO2Rd+kdea5VXRjH
rYSVRDM3rBqHg6+W0CMuUfvodpL0fpiC1ie+h1Ou36C35VU0P/U99csPyC1V
EnDrL5xqSM0WUlfHrajaq+OWPLVysrGpH9n0TrYwKorHk5ucWK4TK2Wts7d8
OlNsjNrOtiySKzD6p2yBvwpGC2yMTtGSdYVM1rUxahzROEbtnJ1VpqqF+3aN
vZhOWyuPuzpGUy/B6CVedLIiU54zLHwqNi8px7Ktq0DUb99HyZlkIzRWfsEB
BXio7t3kFH0khAaLTcZNJlluMCHnttnaRqhUO0tQQ+53JzEtWVxN6+ZrOkXK
C7et+R/YX3mLhpR9UoFfQqu4mm0tTdGM4WUIlaYUoZzosPSTqyXV9uRkf7rc
0614hrmXBYHuE3+xZJHWNsjtiEL2vQsoUUNyn4sV4iikCn7sBWrD62oI9RXP
sg2qr3S2olTvn5k3wdify5f7TE03yzjEyXVLBTHfb3dOxe68yRwEfcIVKZr2
EkZ6l83UrJmj0SKpevdomsncWE/VweqJVrGOJ8tEmxI2WyQgU6rWiUwbmEJ6
8nebS2xgukyP/0Rgjo97tBNiPolEHFzxpjTcmIhSaZMKOBGlekG5UGTBhGwh
bF4/Dkr1ZgwrJ+ltbGPpF4u4JsV3saSbm4xZBi62xdDCafKHYBRJ/x/rfW1T
\
\>"], "Graphics",
Evaluatable->False,
ImageSize->{396, 19},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0, 1}}]}],
Active->True,
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://functions.wolfram.com"], None},
ButtonNote->"http://functions.wolfram.com"]}
}]], "TitleCell1"],
Cell[BoxData[GridBox[{
{
ButtonBox[
StyleBox[Cell[GraphicsData["CompressedBitmap", "\<\
eJyNmGVsFl0Thod9nj4tRdsCLV7cNbj7RwjuDsXtAwIv7hZCcEKC/cAJCQR3
SIDg7hA0aPAQ3MO71+ye7bb0x9uk3bNHRu4zc89smyT806/3/xP+6d8zIf5/
wxKG9uvfc3h8gyHD7KlAKhGZYf/GxgvjP/bQ/cOsu/jfHnH6NyCpUqUS8xPm
zlmW5c1F+ubYGxYW5u6LTHI2GAx66zyNDHsc5WxIst1eDro6jWSzzLuVgiX5
nEcWV1ooFPJLC6XgT0SyObWLv2bBZ6RkTEFAcjNYCyWbS2mffy4lef65bM4j
k4tGMuwU14C+RUp4eLjia37MukHNnQu6zieBIiJCMmXK9Pe2MAkEAp40xg5K
fxua2p0zGhMdCiXZZ6yyLbVcw82yX1VMTIxkyJDBv5aS1qD71xx1j8f5ULPU
q3DJmzevLF++XAoUKKAi0qRJI4sWLZLRo0e7EEZIxowZpVevXrJp0ybZsWOH
7NmzR86ePStt2rTBaGdbtMI1aNAgOXnypNy7d0/WrFkjxYsX/8uJtGnTypAh
Q2Tbtm0qbteuXbJ//37p0KED68ah6tWry7Jly6REiRKuQxlVxfjx46VPnz4S
GRnpicTCOXPmqBf4lSNHDlm8eLEMHz5cA8DdF3CRb9GihWzZskWuX78u165d
k82bN0urVq0MbNmyZZPJkydLgwYNHKiwPiBRUVEyatQoadu2rWT1QWlfsgmB
KlWqyJ8/f6RWrVp6ndj68+dPadq0qYtmuMTHx8vOnTvl9u3bMmPGDBk5cqQs
XLhQqlatKgZKfOjZs6d8/PhRVq1aJQkJCXLp0iW5cOGClCxZ0oMUndmzZ5fL
ly/LoUOHZMqUKapz5syZUq1aNUdcXhX95MkThcgcU1dtE3ESNSNGjJDUqZ14
hSZiY2Plw4cPUqNGDYVw3Lhx8vXrV+nUqZN31h+5qGQ/N9m7d2/p37+/7N69
Wx4+fGhC1nLRKlWqlNy/f1/Gjh3rUSAe58mTR86fP683lwTgCN2GVbZT8v37
dylTpowGyLdv32T27NlBF9uCBQvK4cOHNW7Sp0/vhR3SnVGMzhHBBw4c0HnI
AbFonjVrlsYYFvEE26dPn2q4Ao6X6i79Wm7EYBo67969C2COKxkkZ86cmjRX
rlyRfPnyeUTCM1euXPL27VsNb8Ll8+fPMmnSJJ9olIWp58OGDVNPJ0yYIJkz
Z/aYhojs2LGjREdHu3MOMyHz6tWrXvhbDn6SP39+OXbsmMaB7/6c6mBDo8EO
HuEqhmj+9OmT1K9fX9EBNY6ZPAFtrpv7CpnS4hA6S3joeBGUokWLaoCuWLFC
0qVLZ6lZIcmaNau8ePFCg8VHEWGuAhS/fPlScbJD3JIbN25IrGYYUCQPQfL2
+fPn0rx5c1W2b98+L1RVn2tikSJF9KZWr16tfKfR4d6sIzGNlyIQGBQxdOhQ
lUNUIAfLT5w4IXPnzjWxGuMjA7YSMGTeu3fv5ObNm2o2HMdxpV/LDW50gOPa
tWs1uwkVbHRrj2NSlMq0sdNg3bhxo7x69UqzESLk0nAF4nv06JGMGTNGRRQq
VEjvgmTQWqWySqloZPz48UMWLFigdP/48WM9W6dOnSQZjh+wAYlAVOFH9+7d
Va+BxK1dag/c37JlS33nrFkzDmt1di+b+WLFiikTQ1zYzDuQlC9fXk6dOpU8
WiVLUri1v7Ah5bdcuXLy5csXdePixYuaeD169BBT3UF269at8v79e107c+aM
EhT1xIbPlBm2cbHE3uvXr3XZ5K1RB9JHjx7VdayHgvG8Xr16RhtGUze5fC6N
H44AfFxcnLMtvZIMBt+5c0cJHqLv2rWr3if4GHz79u2r+IOL5ZrilLZIKVy4
sKbomzdvlACPHz+uqnAS5pg2bVryDsCGDj/QULlyZeWfunXratauXLlS6wU3
YZoAuIOaeevWLXVg6dKlsmHDBmnSpAky3OvUvDhy5IgG5/z585XrDR44Yvst
p0+flnPnzmn+Ud2I+4oVK5ptWESR3Lt3L9yuDEcKtm/fHkwC7iWBAGHMBVAK
cufOLevXr1fDK1Wq5GU70DVr1kzhRYSSVCBgkGMZ30CKejV16lQtyyBGWYae
pk+fniTHI72yxROaJOioSbhIZPDer18/Ax5pCCMh0ISyYRyvhwvplN2HyK9f
v7Qukz22RMvlJH8CETTQYufOnb0W10jWhHNF0pDhOYFDKQIlW07Ax1VUFCId
6kFUhQoV9J2od6oHZoYr2CQMPRsVx+RjojqnEydqUDdgwABdc8g+qHqIyXnz
5qUQizjHblL49+/fGosEE30JEVyzZs0ksXjw4EFZt26dBhTsRi10WcbwKsYA
J4RVtmxZdbZ27dpabexLsnwYAOezZ8+0JUErDSUSuYHE5iHCuzQYgqxHNM2Z
20iY2GRblixZNAugU8YEFTdmE4R3SwZCKhZxTOLZqWzqO+0scZhY353CVLp0
aW0fwYaIA18spZmnKJF4WJQE4kjvskh3ulJCHrLBcTpHl1MMfOTg9u3blSzh
FJpW0rZbt24kl+NrlEJHpYXCTP7RKdD8mA8vnlRnKApthAEsAROoOF8C8PUB
d5s+1/vCcBKA+6bPJMJgBdTRQnNjptVP/BqOUPaAs2gdIBq+SuBqztqfUyYR
SN4HDx5oITRdIVjRyLF1yZIlyeu8aRt40uG2a9dOBg8eTN7rJStv614nPSEl
nCUvyC26OpwMus6btJ44caI2k9yuHemWT52O7Iu22VKjmK6E3pRGj6BQUe7/
HHQz8hs1auQ1tea/EAiDFLFh4MCB0rBhQ6+6maD0MilclyjJmAQlk8KMmTOX
g/mULNRRjjT1XSRpW0hgzEF0nB/JNIoiX4WEDPeLi4gi7rGc7oM1npYmU7Rm
KXnPuumAUMkZPpNhK/azD5nMESPI4bY4Y69buiGgqQNxY6mli+E6ZsRRjkFg
iOKSLBWeQaMalfwiiXfWeWeMsXAuY2ThFmYztpzdKhtzkc1+9Bh9zGMXMjEf
uZRotLOfJ0SFPOzlvNnPutGJbfgR66eEGL0QSghNUpcuXXTM1zG0CSnxiU/R
pK8jk3intyN2GjduLK1bt9Z1voktpxjpPuaQY/Yii57RUknRqot95IyRiyzk
mLGRS8+MPchjjrM87T0WC5buDuke+iZkco6n7rFfLKTqyA434wxCzCHeUYRy
DjLPuxps6TCok3jEr836lu4M6aIBjX6PZEr8rJJU/wK8eHyU\
\>"], "Graphics",
Evaluatable->False,
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{133, 23},
ImageMargins->{{4, 0}, {0, -1}},
ImageRegion->{{0, 1}, {0, 1}}],
CellMargins->{{53, 0}, {0, 0}}],
Active->True,
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://www.wolfram.com/"], None},
ButtonNote->"Wolfram Research, Inc."], Cell[GraphicsData[
"CompressedBitmap", "\<\
eJy1m8tuHMcVhltNzvAiSpRIShTlyKatBFkkkBIjF0QreaOsAkMPoIVgGKAX
RgJHD6C9HkB7bZPoFZP+69RX/XdNdQ+dxA2QM11ddeqvc69TPX95/ebq2+9f
v/num9eXf/7h9d+uvvvm75cv/vrD0LRzo+v6R13XnVx2+v7v4Wv+N379rOvG
Zmv4dfq/6s7Pz7sXL150L1++TH+PHz/uvsrPjo6OuidPnpQ/3X+bnu2UMWP/
adud1LabxkB7mOufuavIqenZs2fdHwPRr9L/vYTo/fv3qYsuKFxdXXXPDZna
Pn78mD5HZLvdmzdvEln1HxA9bzcf2/r1SJjfvXuXPv+hR30iHIvSGF2/d6T7
aazGaHZHKlQDned5reoG0Ctb/4cPH9KQrxptd3Obxrx9+zbd/Su3iRbM+V0g
up0fCT1odhptK5tKsGKhYxvXvkHX9Prr08TBSNHTs+FvJ2gM307ToPWEuC59
H9p2jKYwRefNufv4N3S5nUUnHmvWPPIgDxIICO3OMSAhOywkW0yBAQ4Meg5s
t9DLvIULh02iw5N148GRcYlLz7KG9GXwzvTbIDsfAsmWRHcabSzSoYDbGdli
0Lqwr7cRqHRrkeiPDC5bQ+fyZyWneWU+Vs/1vc9zu1hglkkSJ6XPW5mcLwhm
OVNqKTskXyL9nMnAxIFsm2vJHEcRb0e+O6HWLagGNHpjbv0MoWFavvIJrTKT
86Xm1YY1JWVBvbZx90ZnDFoXLypXKN159erVOP96olL6lG8e2vrMJPVWsxY1
TBoSvp8IKqhotJwZq1BX3YOFobogRYDRJVB5RrXFrPuJhLoqWOgCpNg7tIX+
PCzBAcOEui7N6veaUcNFSp9CAwLCIdP52GElseiLgsoXqGEMhxGQJdDome51
wWan4YzpU++YkSUNsEKYN1OTSIn3rGBGglk3PqmZl1qRFdzRM9HVc+ggW5cl
MoejKBVLR22gJywD5ljPvcJBTaupHIJF+uIPRcaFq+k1TnREXlBQSWAT2dSH
8boY4yyjb0t1NXa4jxXdmUBvqGRqY0kkPvYdp1MZTp+WetzUzG0LEhnxN0gf
Fnnoj6TC1Sub8Crb2Jzm5nWvM9Va6jMWHQs5mrAIlqg764a7GXwI75epC7ka
XKQr+u4IED6mBU8qyy1KpX74SHiNMm2zh8A4pqKkt06XZ6IrrpTYfneWA0DV
EJ8emEyltoDws9IOTNFDGPVSl+DW9BeDwJOmrv9UUDBVp1073utIYrgPTf9D
UVOueqfD8OsELSTlDhh6uncldaWds7aluZZC04A1x3mSKfWa5oZHZXUgJXyQ
xfqzASmu1LYjEzngWXxRek5KSch2l67+eQGhTgcTYyHISLVQK5ELKA8n8mH9
4qsuHAWbX+7doAlowCUCgCHv12O6z4qWZYYUDpArEtNcXPXq3RpEQ8+wIJJx
76ulq38I7bRASw7VsvElQbZYqKtPlC8mS9ZzZ4tbLn4YGs5G3SNZ2tGEMRCv
JuZG4tknCseFn7U42UW473aF1nOSCExPbfoEr+5RAXiLvHSP/FoaHKp5c5JR
6q/FV/r0GVUOmOhLv2BEcxqKGOaWZaoW5A83IpY7ng2TPlhUZJgQIf/2hhJs
M3MhL5nSQbp1z425ur2Ert8pdlHLy80V+4HPgp9phQiOa2ueqBJpAmbtfUcT
WTVNhD0UMDUbUAaaodV3J5YtYpCe4wRqQLYTFhL1MedCP+4+VsVNOM6ontwq
a/VYXmHdYHEi3p38V26lgeV/h7K3YX3ujftEYX+WXhZ5YmOwbH8SIFgeXivF
I2n6fnEOM3re57KMm4/5q1CCh2mC2nK2WVzLolrRihxyoFNFfd9F7WbX4KqG
tJgZFAOlvWzugIFL2CkpClJsmvutkqV4xuLMhrvCLyRqj6kflGxGbfU0hnRi
l0BAL5kHRbF5g0n3iufgqn0nHPB8FIaxE3AYmiI2PAcT7+Xm4pCp0ngbu7Yl
YRnL8EQIpyp5xAx7G5tqmDrWA3YnhwFJvQOOD1vl2bwUwGwDKESPG8Dtuha1
9gMiF6Q/LSHOn3tlwUWKKdQ7Wu7rHWOdLRkfvQrqK86WGyHwbGITS8q3tAoL
Qq06LwVM1/NVVoolBbXF0t2l7FKfsVj3LLp8DwJ1Etepbzkrm3EXgydvWLsn
sbVSmoXm6qbYGacTXqWhH2Kc0f3gQgQuugpiTcaZiWbNLd0FFRY8QESKIgAP
YvI7Zb2s39WXJNdrgxVQ1NJJw47hnseLzuH/BOJwA0RtTtmdUitv8R1WUaMS
CT8dgLcUSaibEyiuEX8mz6QSO1lFmZPLrWPJsBatZmcSZ0LqJQiba+xIuL3I
oMs9BRrY5/qdnUJ0ren8XAD5UnBjtV4XIU2rU46iSfsT90wKyna9JJ33moGZ
oT6jR86at/5d/HfdAAK6Ab2RE5+UPRtQPeIS2dn71cmIJ7ZuPK1i86iPJxMd
ZW/n41pSbbAxkuJVGYJ6a+nOBoIbdu6Cg3QJI+vyCNnn2tkquKa7k4IO6RCj
qWrW+gFnvUJRUunziYApBniaxD4RZtUFkfp+0wkcb9R2Kma6GqfvbvyUrups
cE4pr7MeivGkDb17PRarz6mHO2hqbH1GFZnGxST8s3+cs+c6z2G7UTO0Al8Y
rO9qo/LtAVZze/4KFhhnEfDWxHTdLLw84ulSOLF5WyAppFzk0sX0PBH3evUc
E5y+S77BzJDbnya6TzTSME4M6qrXEtxaVj/Sc/xkWDjFdtaAbSfr7xItkkfO
h1wV6j2SeWu2S3Pq7btHMmPPUwP22cRltcyM5G3JjCwY5UDO8b2njWzQ3DOw
R4eZVi/px+Os+5MZvQTsaY76SAk4VGl5KhdQStBik1Dvf0SizwUrT9wIMV79
jGrGWdE/PaurcOxJgYlPqLfkpsck4X7MThXNOYbasi9A1VylRZJzD/f1Uam7
XaYFMhC9eqp2feYDaPUNB7Q/K8zMyWDkfjm94cgQVFnTYtt8VkAgYsTqNQMq
ybrUzxfF9+yTqfYhLt9bUYhyL2eHoFg2GQGSFPgge1qQeg7tDtSrdiweC0eZ
UWK0y82wzyemCzzFUYgMSpSlHihPmubT0sktq+kjsJVDc3RCQzySEJo3Lflg
Vnfd/6zM6mvRL1l4fV9vTrIQYhk3N5bB3hQN9Bp5qMqtidvz9yFrvfdoFEX1
O5NA6jIWfY46Z4xjLE48St29puennaToHhxnuFCsuq440M/T+JDezdJPc3LA
7NUIDDCK0GEic3idfvJ1C3Ehq/3EKYMlEvS9a2A5vC4WP4dgR1M7YSTXIucW
H2L7csMr1Oz2t0y2KbravC7qu0rPj1rVtNrwts1VxajQhBLg/UyRPaef1UaI
WRcTVz/NljkXQy5LMkaGQn3Ukyo/t4OMV1GgwQE5W01nthdEiWZD/4BxuwRR
8YIXp+0FgUleaVOGBt4srNcsVJPYv4GWe+p/7n5dpGyF/IUaL4iqHUaz1Sgx
a69og0+L5vQ5guHpMwOJhl7UMlGGJB+URxULC3VEhpuoc2pEjCdER7O4+5w4
I+Gx+LVb+JgdN9UiZgpD18P9IkkcAL68hCRdkfjhyzAIdBIpeOD0MO6lE7Iu
P0PxAiESdt+kT39lqmIoEBEu3cfsY69pNrSFUl5M/MHScvxZfUzJ8vxNOrPi
UmavFXdm6byYUYt/ycIdBtto3wVEUD8p8FrL8RdHoIlS6LK5/V1PFARbaZmz
oHs9DAgomJ+szFlIcPG4SBBVRzFdYl66x+WMbFhPJGdlmDCPdVMwQxtbtBf5
NyXMjJBgenYLvbnNFuDGDJse5e5Wj3INJKXu/WOgtAwwymfqeTgJKjU9Xdki
drN3otiQ2U3G2Drg4cR7TtnZCeAmxs3KxcQAagNaCh5LobMOWFWQ94I1Qd5T
i1/kNq8lXOY2N4qHuc33W8cNep/mNi/jM9YT9Ae5zcsx/NLItzy/afTjB0xe
E2lhfpTbnF2M9ZfQzjPHvA2RD/QfNYZAxpOc1pnOfWMR/YId5X0arx3aQRUx
xH/Nhgc5NUbBaIThTPm6Qp5SM2sjvnzRUIKzDM/nsMKUH8OQIhxYG3JGfl7T
Wjcg8Kse0lu1/9zGkrZdNBj/tLHMzxv4+GGM6xKJiEwHSTw0euC7NxUavo63
cwTlI+9grcr21F+gOKm4M1rQbnEGGf3XVddUuDEZAZRFUuPWs7PGNJyVkFXp
YrphzGE1ROR/m9pWG0O8JulQkuz9DI9dBBh9D/PAlm2l6KcVDj1iuG/BajkK
1yrjpZ5ByVXjHjTwTuQ5/o4oxBcnqGxkYqM6EDs1fFyYHWaqTxefMKTjBZsI
c/o8s4GULpvaWWOa2huQu2joYTWdnn+ZSVf9dxooDnNXSim56P5FA8W5yQ3K
w/OnFQD9ITeO21xu3m9tPCAKD5+IzIFmkW3//XF34z9h9RkJ\
\>"], "Graphics",
Evaluatable->False,
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{541, 18},
ImageMargins->{{2, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0, 1}}]}
}]], "TitleCell2"],
Cell["ExpIntegralEi", "Subtitle"],
Cell[BoxData[
StyleBox[GridBox[{
{
ButtonBox[Cell[GraphicsData["CompressedBitmap", "\<\
eJyVl01OWzEQxx/vI6EpUCJCF1UXCKkLllUWXAC16qJLDhChRrCoWlEkrsAV
uAJX4Aq5AlfgCqn/Y/+c8etTaSMlHo/HM//5sp2vi5vLb98XN1cXi6PP14uf
l1cXv44+/bgOrGarqqpl+L4/qkSvA5l+ltV6vdaiDXs2NNXz83O1Wq1sNnE8
UZ739PSUeYf6rSX2ZmBHPcAbD/CaCCSKj+LS/X21Wi6r1XxuY5h3trxb3d7e
Vv4j7nK5zPTd3Z3R+HIfVNXGeVvNgzrWHh8fjZa85I6Pj6uzs7O8Zzqd2rpG
ZIbsBD1tChDQMC1PUCOe5gFCRLNraMRSRD0SfaQKGlT61KawK2SS2uRlaygd
2hjXzhDwkbOaF6EPk8CykIdvY79TixOZ8n4LhxDIslT5uD88PBitMVaCpF/b
nBiKFnLviTyV5GbPpNgjLN6Oy2GbvGQZ01JN+sVji1QCk4Dpc35+/kc5aNQc
Gv3JVm3EdmYTjV5U6tgskmgKU3WZhFz3OQnj2AMuCaBQ6dSpFRVMvANGv8CV
LNH9NYUab4EsfbXtiq1PmQo2dtQoJDEnYafoLWgaQTy3JQZlbqU2FGvKwbce
NIcITSI0bWoCjzKYiUFqc4tKbRD39T9WrJuUBG0nwJG3VwRNpmgk0QRNjohH
WVneZWzfTLtDI6vwWygbVAM3wImx/ZDTIO2cZ6iionw68cTTUks+xINWQIFI
uWBLa/A4H4EbG2xkNn2Pagyl2Px/geORLPsDjAKllWOBHpi81sQXCoItviJG
w4inOci1R3oUBcmIjz32C4PWJG+3UGzfk8FDmmJAMeUOrXUMiQdY5HFafMJO
98FHJ8HAJkEQzf7+Ca+LtYh95JV39ii3GBlP7nF8+TNoO23xtQ2KELJpuvcR
V90AHt6+e1uQpcMIvEnJsKvJvwjCfJRUy29KlROOUudh4lsCc8RJPtU9niAi
51trFmEdDLya9mKEghMnThlJmRWvrr8N71w0uMa++DR2+fbxZVybqS7fer68
uaLg0SpUaqIbl0r/QtO2oDI3cJw6q9tZDJd7CCKApgDwsfRJOHFZu+P9I12T
wifJQCObnkG1Tdrc4UmMoubQ+Ge3OgMhHhdqfE6IineJLEllWJ/7gm1NhkAY
NE12Ck9QSBFBk5kwxriNimQlZzfX2jjvRiuGh1zhJdp3hTsp0HOfmXHWxuHp
z7kY8qbgR94kP/H6VntZpAC0lfrYxFrcJmezX3IUgMs2MF4qOdYJZ1Ztf2ia
KKKFjcjmudUV/SF+LNfNTUXfbzwZqrKwk6cJCouolP+Uirx0WZW+mDMPZkkl
fVwUeldA4DJtkzkfxNOyoolAQlOrYmaR0o5XfYFiToiw45N9+vKZWG39BoJy
Go8=\
\>"], "Graphics",
Evaluatable->False,
ImageSize->{102, 28},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0, 1}}],
Appearance->"Frameless",
ButtonFrame->"Frameless",
ButtonFunction:>SetOptions[
InputNotebook[], ShowCellLabel -> If[Part[
Options[
InputNotebook[], ShowCellLabel], 1, 2] == True, False, True]],
Evaluator->Automatic,
Method->"Preemptive"],
ButtonBox[Cell[GraphicsData["CompressedBitmap", "\<\
eJylVUtSIzEMNXZ3h/ApsiDDhkX2LHMGYMUhUhRdYUHNFMNlcqe+U2NZkvvZ
sSGErnJsS9aTniQ7T5uP7cvb5uP1ebN6fN/8274+/189/H33IndijLn343Zl
aD36pfzcm3EcSVmY2jD5393ODH1vhvU6zLRnnTM7v6ZvGAa/I1kX1vityW4Y
rJioSMD3YPjcRYQhXYgH7EhHa4C/4kONIIagSeOHk99RkGjYKoEmeibkvu9t
2LAYAumOjJ2+ntLpz9Dsz2Sxx2RD7CHxSeyL6JmQaai33Lvue8EQG0uKRiJW
LJqVaI1FMKPPRVI0LoHFjMJm7PlenOhH16XucAUnVmqkmPIFLr73Kkm3YeFi
31Amfpn0rBuOSPqimnQsZt72hCf6xTEtfxa9EhINbMjv296SPbucJVBIolbR
60Nfllle4JhHvqgcmuZdGP64X9pivyx5d6eNMTkwgfzyizfzq6kR1lpFTJqG
SWuSidxmJtgEFp5bLR+cC6FKNjPUaEp7jUIhQh5J4KLHmEfGbJIwKq4UzpW5
4zGuRZPLLbweuQlesgliHiNWsrTGNE9n2z1MTgwzR3lzIHOsAaMA8z9JCUth
ZcjFTBX03zHX7s2Z5y4sxHw48y6hAmFaJH9aJS/ebBC0KIprdjRP5PDXmUBh
OVSnenwIwFabLxM7uPyKgunLbgwDJBXvatXsAFrzgddDj+s83bzTzJIjTwOV
vwItkEu8n9cfIiWzjLZXdeTpYmfIbdTfxBXiaKG6guys9Gaak08nXW/2\
\>"], "Graphics",
Evaluatable->False,
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{69, 28},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0, 1}}],
Active->True,
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://functions.wolfram.com/PDF/ExpIntegralEi.pdf"], None}]}
}],
ButtonBoxOptions->{ButtonFrame->"None"}]], "HyperlinkHeaderGraphic"],
Cell[CellGroupData[{
Cell["Notations", "Section"],
Cell[CellGroupData[{
Cell["Traditional name", "Subsection"],
Cell[TextData[{
"Exponential integral ",
Cell[BoxData[
FormBox["Ei", TraditionalForm]]]
}], "TextHeader"]
}, Closed]],
Cell[CellGroupData[{
Cell["Traditional notation", "Subsection"],
Cell[BoxData[
FormBox[
RowBox[{"Ei", "(", "z", ")"}],
TraditionalForm]], "TraditionalFormEquationHeader"]
}, Closed]],
Cell[CellGroupData[{
Cell[TextData[{
StyleBox["Mathematica",
FontSlant->"Italic"],
" StandardForm notation"
}], "Subsection"],
Cell[BoxData[
RowBox[{"ExpIntegralEi", "[",
StyleBox["z", "TI"], "]"}]], "StandardFormEquationHeader"]
}, Closed]]
}, Closed]],
Cell[CellGroupData[{
Cell["Primary definition", "Section"],
Cell[BoxData[
RowBox[{
RowBox[{"ExpIntegralEi", "[", "z", "]"}], "\[Equal]",
RowBox[{
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"k", "=", "1"}], "\[Infinity]"],
FractionBox[
SuperscriptBox["z", "k"],
RowBox[{"k", " ",
RowBox[{"k", "!"}]}]]}], "+", "EulerGamma", "+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"Log", "[", "z", "]"}], "-",
RowBox[{"Log", "[",
FractionBox["1", "z"], "]"}]}], ")"}]}]}]}]], "StandardFormEquation",
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.02.0001.01"]
}, Closed]],
Cell[CellGroupData[{
Cell["Specific values", "Section"],
Cell[CellGroupData[{
Cell["Values at fixed points", "Subsection"],
Cell[BoxData[
RowBox[{
RowBox[{"ExpIntegralEi", "[", "0", "]"}], "\[Equal]",
RowBox[{"-", "\[Infinity]"}]}]], "StandardFormEquation",
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.03.0001.01"]
}, Closed]],
Cell[CellGroupData[{
Cell["Values at infinities", "Subsection"],
Cell[BoxData[
RowBox[{
RowBox[{"ExpIntegralEi", "[", "\[Infinity]", "]"}], "\[Equal]",
"\[Infinity]"}]], "StandardFormEquation",
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.03.0002.01"],
Cell[BoxData[
RowBox[{
RowBox[{"ExpIntegralEi", "[",
RowBox[{"-", "\[Infinity]"}], "]"}], "\[Equal]",
"0"}]], "StandardFormEquation",
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.03.0003.01"],
Cell[BoxData[
RowBox[{
RowBox[{"ExpIntegralEi", "[",
RowBox[{"\[ImaginaryI]", " ", "\[Infinity]"}], "]"}], "\[Equal]",
RowBox[{"\[ImaginaryI]", " ", "\[Pi]"}]}]], "StandardFormEquation",
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.03.0004.01"],
Cell[BoxData[
RowBox[{
RowBox[{"ExpIntegralEi", "[",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Infinity]"}], "]"}], "\[Equal]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Pi]"}]}]], "StandardFormEquation",
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.03.0005.01"],
Cell[BoxData[
RowBox[{
RowBox[{"ExpIntegralEi", "[", "ComplexInfinity", "]"}], "\[Equal]",
"Indeterminate"}]], "StandardFormEquation",
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.03.0006.01"]
}, Closed]]
}, Closed]],
Cell[CellGroupData[{
Cell["General characteristics", "Section"],
Cell[CellGroupData[{
Cell["Domain and analyticity", "Subsection"],
Cell[TextData[{
Cell[BoxData[
FormBox[
RowBox[{"Ei", "(", "z", ")"}], TraditionalForm]]],
" is an analytical function of ",
Cell[BoxData[
FormBox["z", TraditionalForm]]],
" which is defined over the whole complex ",
Cell[BoxData[
FormBox["z", TraditionalForm]]],
"\[Hyphen]plane. "
}], "Text"],
Cell[BoxData[
RowBox[{
RowBox[{"DomainAndRange", "[",
RowBox[{"Function", "[",
RowBox[{"z", ",",
RowBox[{"ExpIntegralEi", "[", "z", "]"}]}], "]"}], "]"}], " ",
"\[Equal]",
RowBox[{
"Complexes", "\[LongRightArrow]", "Complexes"}]}]], "StandardFormEquation",
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.04.0001.01"]
}, Closed]],
Cell[CellGroupData[{
Cell["Symmetries and periodicities", "Subsection"],
Cell[CellGroupData[{
Cell["Mirror symmetry", "Subsubsection"],
Cell[BoxData[
RowBox[{
RowBox[{"ExpIntegralEi", "[",
RowBox[{"Conjugate", "[", "z", "]"}], "]"}], "\[Equal]",
RowBox[{"Conjugate", "[",
RowBox[{"ExpIntegralEi", "[", "z", "]"}], "]"}]}]], "StandardFormEquation",\
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.04.0002.01"]
}, Closed]],
Cell[CellGroupData[{
Cell["Periodicity", "Subsubsection"],
Cell["No periodicity", "Text",
Evaluatable->False]
}, Closed]]
}, Closed]],
Cell[CellGroupData[{
Cell["Poles and essential singularities", "Subsection"],
Cell[TextData[{
"The function ",
Cell[BoxData[
FormBox[
RowBox[{"Ei", "(", "z", ")"}], TraditionalForm]]],
" has an essential singularity at ",
Cell[BoxData[
FormBox[
RowBox[{"z", "\[Equal]",
OverscriptBox["\[Infinity]", "~"]}], TraditionalForm]]],
". At the same time, the point ",
Cell[BoxData[
FormBox[
RowBox[{"z", "\[Equal]",
OverscriptBox["\[Infinity]", "~"]}], TraditionalForm]]],
" is a branch point."
}], "Text"],
Cell[BoxData[
RowBox[{
RowBox[{"Singularities", "[",
RowBox[{
RowBox[{"ExpIntegralEi", "[", "z", "]"}], ",", "z"}], "]"}], "\[Equal]",
RowBox[{"{",
RowBox[{"{",
RowBox[{"ComplexInfinity", ",", " ", "Infinity"}], "}"}],
"}"}]}]], "StandardFormEquation",
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.04.0003.01"]
}, Closed]],
Cell[CellGroupData[{
Cell["Branch points", "Subsection"],
Cell[TextData[{
" The function ",
Cell[BoxData[
FormBox[
RowBox[{" ",
FormBox[
RowBox[{"Ei", "(", "z", ")"}],
TraditionalForm]}], TraditionalForm]]],
" has two branch points: ",
Cell[BoxData[
FormBox[
RowBox[{"z", "\[Equal]", "0"}], TraditionalForm]]],
", ",
Cell[BoxData[
FormBox[
RowBox[{"z", " ", "=", " ",
OverscriptBox["\[Infinity]", "~"]}], TraditionalForm]]],
". ",
"At the same time, the point ",
Cell[BoxData[
FormBox[
RowBox[{"z", "\[Equal]",
OverscriptBox["\[Infinity]", "~"]}], TraditionalForm]]],
" is an essential singularity."
}], "EquationText"],
Cell[BoxData[
RowBox[{
RowBox[{"BranchPoints", "[",
RowBox[{
RowBox[{"ExpIntegralEi", "[", "z", "]"}], ",", "z"}], "]"}], "\[Equal]",
RowBox[{"{",
RowBox[{"0", ",", " ", "ComplexInfinity"}],
"}"}]}]], "StandardFormEquation",
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.04.0004.01"],
Cell[BoxData[
RowBox[{
RowBox[{"RamificationIndex", "[",
RowBox[{
RowBox[{"ExpIntegralEi", "[", "z", "]"}], ",", "z", ",", "0"}], "]"}],
"\[Equal]", "Log"}]], "StandardFormEquation",
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.04.0005.01"],
Cell[BoxData[
RowBox[{
RowBox[{"RamificationIndex", "[",
RowBox[{
RowBox[{"ExpIntegralEi", "[", "z", "]"}], ",", "z", ",",
"ComplexInfinity"}], "]"}], "\[Equal]", "Log"}]], "StandardFormEquation",
TaggingRules:>"from www.functions.wolfram.com",
CellLabel->"06.35.04.0006.01"]
}, Closed]],
Cell[CellGroupData[{
Cell["Branch cuts", "Subsection"],
Cell[TextData[{
"The function ",
Cell[BoxData[
FormBox[
RowBox[{" ",
FormBox[
RowBox[{"Ei", "(", "z", ")"}],
TraditionalForm]}], TraditionalForm]]],
" is a single\[Hyphen]valued function on the ",
Cell[BoxData[
FormBox["z", TraditionalForm]]],
"\[Hyphen]plane cut along the interval ",
Cell[BoxData[
FormBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[Infinity]"}], ",", " ", "0"}], ")"}],
TraditionalForm]]],
" where it has discontinuities from both sides."
}], "EquationText"],
Cell[BoxData[
RowBox[{
RowBox[{"BranchCuts", "[",
RowBox[{