-
Notifications
You must be signed in to change notification settings - Fork 3k
/
data_loader.py
98 lines (88 loc) · 3.17 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import collections
import dgl
from dgl.data import PPIDataset
from torch.utils.data import DataLoader, Dataset
# implement the collate_fn for dgl graph data class
PPIBatch = collections.namedtuple("PPIBatch", ["graph", "label"])
def batcher(device):
def batcher_dev(batch):
batch_graphs = dgl.batch(batch)
return PPIBatch(
graph=batch_graphs, label=batch_graphs.ndata["label"].to(device)
)
return batcher_dev
# add a fresh "self-loop" edge type to the untyped PPI dataset and prepare train, val, test loaders
def load_PPI(batch_size=1, device="cpu"):
train_set = PPIDataset(mode="train")
valid_set = PPIDataset(mode="valid")
test_set = PPIDataset(mode="test")
# for each graph, add self-loops as a new relation type
# here we reconstruct the graph since the schema of a heterograph cannot be changed once constructed
for i in range(len(train_set)):
g = dgl.heterograph(
{
("_N", "_E", "_N"): train_set[i].edges(),
("_N", "self", "_N"): (
train_set[i].nodes(),
train_set[i].nodes(),
),
}
)
g.ndata["label"] = train_set[i].ndata["label"]
g.ndata["feat"] = train_set[i].ndata["feat"]
g.ndata["_ID"] = train_set[i].ndata["_ID"]
g.edges["_E"].data["_ID"] = train_set[i].edata["_ID"]
train_set.graphs[i] = g
for i in range(len(valid_set)):
g = dgl.heterograph(
{
("_N", "_E", "_N"): valid_set[i].edges(),
("_N", "self", "_N"): (
valid_set[i].nodes(),
valid_set[i].nodes(),
),
}
)
g.ndata["label"] = valid_set[i].ndata["label"]
g.ndata["feat"] = valid_set[i].ndata["feat"]
g.ndata["_ID"] = valid_set[i].ndata["_ID"]
g.edges["_E"].data["_ID"] = valid_set[i].edata["_ID"]
valid_set.graphs[i] = g
for i in range(len(test_set)):
g = dgl.heterograph(
{
("_N", "_E", "_N"): test_set[i].edges(),
("_N", "self", "_N"): (
test_set[i].nodes(),
test_set[i].nodes(),
),
}
)
g.ndata["label"] = test_set[i].ndata["label"]
g.ndata["feat"] = test_set[i].ndata["feat"]
g.ndata["_ID"] = test_set[i].ndata["_ID"]
g.edges["_E"].data["_ID"] = test_set[i].edata["_ID"]
test_set.graphs[i] = g
etypes = train_set[0].etypes
in_size = train_set[0].ndata["feat"].shape[1]
out_size = train_set[0].ndata["label"].shape[1]
# prepare train, valid, and test dataloaders
train_loader = DataLoader(
train_set,
batch_size=batch_size,
collate_fn=batcher(device),
shuffle=True,
)
valid_loader = DataLoader(
valid_set,
batch_size=batch_size,
collate_fn=batcher(device),
shuffle=True,
)
test_loader = DataLoader(
test_set,
batch_size=batch_size,
collate_fn=batcher(device),
shuffle=True,
)
return train_loader, valid_loader, test_loader, etypes, in_size, out_size