-
Notifications
You must be signed in to change notification settings - Fork 3k
/
utils.py
328 lines (273 loc) · 10 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import multiprocessing as mp
import random
from multiprocessing import get_context
import networkx as nx
import numpy as np
import torch
from tqdm.auto import tqdm
def get_communities(remove_feature):
community_size = 20
# Create 20 cliques (communities) of size 20,
# then rewire a single edge in each clique to a node in an adjacent clique
graph = nx.connected_caveman_graph(20, community_size)
# Randomly rewire 1% edges
node_list = list(graph.nodes)
for u, v in graph.edges():
if random.random() < 0.01:
x = random.choice(node_list)
if graph.has_edge(u, x):
continue
graph.remove_edge(u, v)
graph.add_edge(u, x)
# remove self-loops
graph.remove_edges_from(nx.selfloop_edges(graph))
edge_index = np.array(list(graph.edges))
# Add (i, j) for an edge (j, i)
edge_index = np.concatenate((edge_index, edge_index[:, ::-1]), axis=0)
edge_index = torch.from_numpy(edge_index).long().permute(1, 0)
n = graph.number_of_nodes()
label = np.zeros((n, n), dtype=int)
for u in node_list:
# the node IDs are simply consecutive integers from 0
for v in range(u):
if u // community_size == v // community_size:
label[u, v] = 1
if remove_feature:
feature = torch.ones((n, 1))
else:
rand_order = np.random.permutation(n)
feature = np.identity(n)[:, rand_order]
data = {
"edge_index": edge_index,
"feature": feature,
"positive_edges": np.stack(np.nonzero(label)),
"num_nodes": feature.shape[0],
}
return data
def to_single_directed(edges):
edges_new = np.zeros((2, edges.shape[1] // 2), dtype=int)
j = 0
for i in range(edges.shape[1]):
if edges[0, i] < edges[1, i]:
edges_new[:, j] = edges[:, i]
j += 1
return edges_new
# each node at least remain in the new graph
def split_edges(p, edges, data, non_train_ratio=0.2):
e = edges.shape[1]
edges = edges[:, np.random.permutation(e)]
split1 = int((1 - non_train_ratio) * e)
split2 = int((1 - non_train_ratio / 2) * e)
data.update(
{
"{}_edges_train".format(p): edges[:, :split1], # 80%
"{}_edges_val".format(p): edges[:, split1:split2], # 10%
"{}_edges_test".format(p): edges[:, split2:], # 10%
}
)
def to_bidirected(edges):
return np.concatenate((edges, edges[::-1, :]), axis=-1)
def get_negative_edges(positive_edges, num_nodes, num_negative_edges):
positive_edge_set = []
positive_edges = to_bidirected(positive_edges)
for i in range(positive_edges.shape[1]):
positive_edge_set.append(tuple(positive_edges[:, i]))
positive_edge_set = set(positive_edge_set)
negative_edges = np.zeros(
(2, num_negative_edges), dtype=positive_edges.dtype
)
for i in range(num_negative_edges):
while True:
mask_temp = tuple(
np.random.choice(num_nodes, size=(2,), replace=False)
)
if mask_temp not in positive_edge_set:
negative_edges[:, i] = mask_temp
break
return negative_edges
def get_pos_neg_edges(data, infer_link_positive=True):
if infer_link_positive:
data["positive_edges"] = to_single_directed(data["edge_index"].numpy())
split_edges("positive", data["positive_edges"], data)
# resample edge mask link negative
negative_edges = get_negative_edges(
data["positive_edges"],
data["num_nodes"],
num_negative_edges=data["positive_edges"].shape[1],
)
split_edges("negative", negative_edges, data)
return data
def shortest_path(graph, node_range, cutoff):
dists_dict = {}
for node in tqdm(node_range, leave=False):
dists_dict[node] = nx.single_source_shortest_path_length(
graph, node, cutoff
)
return dists_dict
def merge_dicts(dicts):
result = {}
for dictionary in dicts:
result.update(dictionary)
return result
def all_pairs_shortest_path(graph, cutoff=None, num_workers=4):
nodes = list(graph.nodes)
random.shuffle(nodes)
pool = mp.Pool(processes=num_workers)
interval_size = len(nodes) / num_workers
results = [
pool.apply_async(
shortest_path,
args=(
graph,
nodes[int(interval_size * i) : int(interval_size * (i + 1))],
cutoff,
),
)
for i in range(num_workers)
]
output = [p.get() for p in results]
dists_dict = merge_dicts(output)
pool.close()
pool.join()
return dists_dict
def precompute_dist_data(edge_index, num_nodes, approximate=0):
"""
Here dist is 1/real_dist, higher actually means closer, 0 means disconnected
:return:
"""
graph = nx.Graph()
edge_list = edge_index.transpose(1, 0).tolist()
graph.add_edges_from(edge_list)
n = num_nodes
dists_array = np.zeros((n, n))
dists_dict = all_pairs_shortest_path(
graph, cutoff=approximate if approximate > 0 else None
)
node_list = graph.nodes()
for node_i in node_list:
shortest_dist = dists_dict[node_i]
for node_j in node_list:
dist = shortest_dist.get(node_j, -1)
if dist != -1:
dists_array[node_i, node_j] = 1 / (dist + 1)
return dists_array
def get_dataset(args):
# Generate graph data
data_info = get_communities(args.inductive)
# Get positive and negative edges
data = get_pos_neg_edges(
data_info, infer_link_positive=True if args.task == "link" else False
)
# Pre-compute shortest path length
if args.task == "link":
dists_removed = precompute_dist_data(
data["positive_edges_train"],
data["num_nodes"],
approximate=args.k_hop_dist,
)
data["dists"] = torch.from_numpy(dists_removed).float()
data["edge_index"] = torch.from_numpy(
to_bidirected(data["positive_edges_train"])
).long()
else:
dists = precompute_dist_data(
data["edge_index"].numpy(),
data["num_nodes"],
approximate=args.k_hop_dist,
)
data["dists"] = torch.from_numpy(dists).float()
return data
def get_anchors(n):
"""Get a list of NumPy arrays, each of them is an anchor node set"""
m = int(np.log2(n))
anchor_set_id = []
for i in range(m):
anchor_size = int(n / np.exp2(i + 1))
for _ in range(m):
anchor_set_id.append(
np.random.choice(n, size=anchor_size, replace=False)
)
return anchor_set_id
def get_dist_max(anchor_set_id, dist):
# N x K, N is number of nodes, K is the number of anchor sets
dist_max = torch.zeros((dist.shape[0], len(anchor_set_id)))
dist_argmax = torch.zeros((dist.shape[0], len(anchor_set_id))).long()
for i in range(len(anchor_set_id)):
temp_id = torch.as_tensor(anchor_set_id[i], dtype=torch.long)
# Get reciprocal of shortest distance to each node in the i-th anchor set
dist_temp = torch.index_select(dist, 1, temp_id)
# For each node in the graph, find its closest anchor node in the set
# and the reciprocal of shortest distance
dist_max_temp, dist_argmax_temp = torch.max(dist_temp, dim=-1)
dist_max[:, i] = dist_max_temp
dist_argmax[:, i] = torch.index_select(temp_id, 0, dist_argmax_temp)
return dist_max, dist_argmax
def get_a_graph(dists_max, dists_argmax):
src = []
dst = []
real_src = []
real_dst = []
edge_weight = []
dists_max = dists_max.numpy()
for i in range(dists_max.shape[0]):
# Get unique closest anchor nodes for node i across all anchor sets
tmp_dists_argmax, tmp_dists_argmax_idx = np.unique(
dists_argmax[i, :], True
)
src.extend([i] * tmp_dists_argmax.shape[0])
real_src.extend([i] * dists_argmax[i, :].shape[0])
real_dst.extend(list(dists_argmax[i, :].numpy()))
dst.extend(list(tmp_dists_argmax))
edge_weight.extend(dists_max[i, tmp_dists_argmax_idx].tolist())
eid_dict = {(u, v): i for i, (u, v) in enumerate(list(zip(dst, src)))}
anchor_eid = [eid_dict.get((u, v)) for u, v in zip(real_dst, real_src)]
g = (dst, src)
return g, anchor_eid, edge_weight
def get_graphs(data, anchor_sets):
graphs = []
anchor_eids = []
dists_max_list = []
edge_weights = []
for anchor_set in tqdm(anchor_sets, leave=False):
dists_max, dists_argmax = get_dist_max(anchor_set, data["dists"])
g, anchor_eid, edge_weight = get_a_graph(dists_max, dists_argmax)
graphs.append(g)
anchor_eids.append(anchor_eid)
dists_max_list.append(dists_max)
edge_weights.append(edge_weight)
return graphs, anchor_eids, dists_max_list, edge_weights
def merge_result(outputs):
graphs = []
anchor_eids = []
dists_max_list = []
edge_weights = []
for g, anchor_eid, dists_max, edge_weight in outputs:
graphs.extend(g)
anchor_eids.extend(anchor_eid)
dists_max_list.extend(dists_max)
edge_weights.extend(edge_weight)
return graphs, anchor_eids, dists_max_list, edge_weights
def preselect_anchor(data, args, num_workers=4):
pool = get_context("spawn").Pool(processes=num_workers)
# Pre-compute anchor sets, a collection of anchor sets per epoch
anchor_set_ids = [
get_anchors(data["num_nodes"]) for _ in range(args.epoch_num)
]
interval_size = len(anchor_set_ids) / num_workers
results = [
pool.apply_async(
get_graphs,
args=(
data,
anchor_set_ids[
int(interval_size * i) : int(interval_size * (i + 1))
],
),
)
for i in range(num_workers)
]
output = [p.get() for p in results]
graphs, anchor_eids, dists_max_list, edge_weights = merge_result(output)
pool.close()
pool.join()
return graphs, anchor_eids, dists_max_list, edge_weights