Skip to content

Latest commit

 

History

History

correct_and_smooth

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

DGL Implementation of CorrectAndSmooth

This DGL example implements the GNN model proposed in the paper Combining Label Propagation and Simple Models Out-performs Graph Neural Networks. For the original implementation, see here.

Contributor: xnuohz

Requirements

The codebase is implemented in Python 3.7. For version requirement of packages, see below.

dgl 0.6.0.post1
torch 1.7.0
ogb 1.3.0

Limitations

Spectral and Diffusion Embeddings used by the authors for feature augmentation are not currently implemented. Without these feature augmentations only the "Plain" (without feature augmentations) results from the authors can be replicated.

The graph datasets used in this example

Open Graph Benchmark(OGB). Dataset summary:

Dataset #Nodes #Edges #Node Feats Metric
ogbn-arxiv 169,343 1,166,243 128 Accuracy
ogbn-products 2,449,029 61,859,140 100 Accuracy

Usage

Training a Base predictor and using Correct&Smooth which follows the original hyperparameters on different datasets.

ogbn-arxiv
  • Plain MLP + C&S
python main.py --dropout 0.5
python main.py --pretrain --correction-adj DA --smoothing-adj AD --autoscale
  • Plain Linear + C&S
python main.py --model linear --dropout 0.5 --epochs 1000
python main.py --model linear --pretrain --correction-alpha 0.87 --smoothing-alpha 0.81 --correction-adj AD --autoscale
ogbn-products
  • Plain Linear + C&S
python main.py --dataset ogbn-products --model linear --dropout 0.5 --epochs 1000 --lr 0.1
python main.py --dataset ogbn-products --model linear --pretrain --correction-alpha 1. --smoothing-alpha 0.9

Performance

ogbn-arxiv

Linear Plain Linear + C&S
Results(Author) 52.5 71.26
Results(DGL) 52.48 71.26

ogbn-products

Plain Linear Plain Linear + C&S
Results(Author) 47.67 82.34
Results(DGL) 47.65 82.86

Speed

ogb-arxiv Time GPU Memory Params
Author, Plain Linear + C&S 6.3 * 10 ^ -3 1,248M 5,160
DGL, Plain Linear + C&S 5.6 * 10 ^ -3 1,252M 5,160