-
Notifications
You must be signed in to change notification settings - Fork 3k
/
line.py
465 lines (424 loc) · 15.1 KB
/
line.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import argparse
import os
import random
import time
import dgl
import numpy as np
import torch
import torch.multiprocessing as mp
from model import SkipGramModel
from reading_data import LineDataset
from torch.utils.data import DataLoader
from utils import check_args, sum_up_params
class LineTrainer:
def __init__(self, args):
"""Initializing the trainer with the input arguments"""
self.args = args
self.dataset = LineDataset(
net_file=args.data_file,
batch_size=args.batch_size,
negative=args.negative,
gpus=args.gpus,
fast_neg=args.fast_neg,
ogbl_name=args.ogbl_name,
load_from_ogbl=args.load_from_ogbl,
ogbn_name=args.ogbn_name,
load_from_ogbn=args.load_from_ogbn,
num_samples=args.num_samples * 1000000,
)
self.emb_size = self.dataset.G.num_nodes()
self.emb_model = None
def init_device_emb(self):
"""set the device before training
will be called once in fast_train_mp / fast_train
"""
choices = sum([self.args.only_gpu, self.args.only_cpu, self.args.mix])
assert (
choices == 1
), "Must choose only *one* training mode in [only_cpu, only_gpu, mix]"
# initializing embedding on CPU
self.emb_model = SkipGramModel(
emb_size=self.emb_size,
emb_dimension=self.args.dim,
batch_size=self.args.batch_size,
only_cpu=self.args.only_cpu,
only_gpu=self.args.only_gpu,
only_fst=self.args.only_fst,
only_snd=self.args.only_snd,
mix=self.args.mix,
neg_weight=self.args.neg_weight,
negative=self.args.negative,
lr=self.args.lr,
lap_norm=self.args.lap_norm,
fast_neg=self.args.fast_neg,
record_loss=self.args.print_loss,
async_update=self.args.async_update,
num_threads=self.args.num_threads,
)
torch.set_num_threads(self.args.num_threads)
if self.args.only_gpu:
print("Run in 1 GPU")
assert self.args.gpus[0] >= 0
self.emb_model.all_to_device(self.args.gpus[0])
elif self.args.mix:
print("Mix CPU with %d GPU" % len(self.args.gpus))
if len(self.args.gpus) == 1:
assert (
self.args.gpus[0] >= 0
), "mix CPU with GPU should have avaliable GPU"
self.emb_model.set_device(self.args.gpus[0])
else:
print("Run in CPU process")
def train(self):
"""train the embedding"""
if len(self.args.gpus) > 1:
self.fast_train_mp()
else:
self.fast_train()
def fast_train_mp(self):
"""multi-cpu-core or mix cpu & multi-gpu"""
self.init_device_emb()
self.emb_model.share_memory()
sum_up_params(self.emb_model)
start_all = time.time()
ps = []
for i in range(len(self.args.gpus)):
p = mp.Process(
target=self.fast_train_sp, args=(i, self.args.gpus[i])
)
ps.append(p)
p.start()
for p in ps:
p.join()
print("Used time: %.2fs" % (time.time() - start_all))
if self.args.save_in_pt:
self.emb_model.save_embedding_pt(
self.dataset, self.args.output_emb_file
)
else:
self.emb_model.save_embedding(
self.dataset, self.args.output_emb_file
)
def fast_train_sp(self, rank, gpu_id):
"""a subprocess for fast_train_mp"""
if self.args.mix:
self.emb_model.set_device(gpu_id)
torch.set_num_threads(self.args.num_threads)
if self.args.async_update:
self.emb_model.create_async_update()
sampler = self.dataset.create_sampler(rank)
dataloader = DataLoader(
dataset=sampler.seeds,
batch_size=self.args.batch_size,
collate_fn=sampler.sample,
shuffle=False,
drop_last=False,
num_workers=self.args.num_sampler_threads,
)
num_batches = len(dataloader)
print(
"num batchs: %d in process [%d] GPU [%d]"
% (num_batches, rank, gpu_id)
)
start = time.time()
with torch.no_grad():
for i, edges in enumerate(dataloader):
if self.args.fast_neg:
self.emb_model.fast_learn(edges)
else:
# do negative sampling
bs = edges.size()[0]
neg_nodes = torch.LongTensor(
np.random.choice(
self.dataset.neg_table,
bs * self.args.negative,
replace=True,
)
)
self.emb_model.fast_learn(edges, neg_nodes=neg_nodes)
if i > 0 and i % self.args.print_interval == 0:
if self.args.print_loss:
if self.args.only_fst:
print(
"GPU-[%d] batch %d time: %.2fs fst-loss: %.4f"
% (
gpu_id,
i,
time.time() - start,
-sum(self.emb_model.loss_fst)
/ self.args.print_interval,
)
)
elif self.args.only_snd:
print(
"GPU-[%d] batch %d time: %.2fs snd-loss: %.4f"
% (
gpu_id,
i,
time.time() - start,
-sum(self.emb_model.loss_snd)
/ self.args.print_interval,
)
)
else:
print(
"GPU-[%d] batch %d time: %.2fs fst-loss: %.4f snd-loss: %.4f"
% (
gpu_id,
i,
time.time() - start,
-sum(self.emb_model.loss_fst)
/ self.args.print_interval,
-sum(self.emb_model.loss_snd)
/ self.args.print_interval,
)
)
self.emb_model.loss_fst = []
self.emb_model.loss_snd = []
else:
print(
"GPU-[%d] batch %d time: %.2fs"
% (gpu_id, i, time.time() - start)
)
start = time.time()
if self.args.async_update:
self.emb_model.finish_async_update()
def fast_train(self):
"""fast train with dataloader with only gpu / only cpu"""
self.init_device_emb()
if self.args.async_update:
self.emb_model.share_memory()
self.emb_model.create_async_update()
sum_up_params(self.emb_model)
sampler = self.dataset.create_sampler(0)
dataloader = DataLoader(
dataset=sampler.seeds,
batch_size=self.args.batch_size,
collate_fn=sampler.sample,
shuffle=False,
drop_last=False,
num_workers=self.args.num_sampler_threads,
)
num_batches = len(dataloader)
print("num batchs: %d\n" % num_batches)
start_all = time.time()
start = time.time()
with torch.no_grad():
for i, edges in enumerate(dataloader):
if self.args.fast_neg:
self.emb_model.fast_learn(edges)
else:
# do negative sampling
bs = edges.size()[0]
neg_nodes = torch.LongTensor(
np.random.choice(
self.dataset.neg_table,
bs * self.args.negative,
replace=True,
)
)
self.emb_model.fast_learn(edges, neg_nodes=neg_nodes)
if i > 0 and i % self.args.print_interval == 0:
if self.args.print_loss:
if self.args.only_fst:
print(
"Batch %d time: %.2fs fst-loss: %.4f"
% (
i,
time.time() - start,
-sum(self.emb_model.loss_fst)
/ self.args.print_interval,
)
)
elif self.args.only_snd:
print(
"Batch %d time: %.2fs snd-loss: %.4f"
% (
i,
time.time() - start,
-sum(self.emb_model.loss_snd)
/ self.args.print_interval,
)
)
else:
print(
"Batch %d time: %.2fs fst-loss: %.4f snd-loss: %.4f"
% (
i,
time.time() - start,
-sum(self.emb_model.loss_fst)
/ self.args.print_interval,
-sum(self.emb_model.loss_snd)
/ self.args.print_interval,
)
)
self.emb_model.loss_fst = []
self.emb_model.loss_snd = []
else:
print(
"Batch %d, training time: %.2fs"
% (i, time.time() - start)
)
start = time.time()
if self.args.async_update:
self.emb_model.finish_async_update()
print("Training used time: %.2fs" % (time.time() - start_all))
if self.args.save_in_pt:
self.emb_model.save_embedding_pt(
self.dataset, self.args.output_emb_file
)
else:
self.emb_model.save_embedding(
self.dataset, self.args.output_emb_file
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Implementation of LINE.")
# input files
## personal datasets
parser.add_argument("--data_file", type=str, help="path of dgl graphs")
## ogbl datasets
parser.add_argument(
"--ogbl_name", type=str, help="name of ogbl dataset, e.g. ogbl-ddi"
)
parser.add_argument(
"--load_from_ogbl",
default=False,
action="store_true",
help="whether load dataset from ogbl",
)
parser.add_argument(
"--ogbn_name", type=str, help="name of ogbn dataset, e.g. ogbn-proteins"
)
parser.add_argument(
"--load_from_ogbn",
default=False,
action="store_true",
help="whether load dataset from ogbn",
)
# output files
parser.add_argument(
"--save_in_pt",
default=False,
action="store_true",
help="Whether save dat in pt format or npy",
)
parser.add_argument(
"--output_emb_file",
type=str,
default="emb.npy",
help="path of the output npy embedding file",
)
# model parameters
parser.add_argument(
"--dim", default=128, type=int, help="embedding dimensions"
)
parser.add_argument(
"--num_samples",
default=1,
type=int,
help="number of samples during training (million)",
)
parser.add_argument(
"--negative",
default=1,
type=int,
help="negative samples for each positve node pair",
)
parser.add_argument(
"--batch_size",
default=128,
type=int,
help="number of edges in each batch",
)
parser.add_argument(
"--neg_weight", default=1.0, type=float, help="negative weight"
)
parser.add_argument(
"--lap_norm",
default=0.01,
type=float,
help="weight of laplacian normalization",
)
# training parameters
parser.add_argument(
"--only_fst",
default=False,
action="store_true",
help="only do first-order proximity embedding",
)
parser.add_argument(
"--only_snd",
default=False,
action="store_true",
help="only do second-order proximity embedding",
)
parser.add_argument(
"--print_interval",
default=100,
type=int,
help="number of batches between printing",
)
parser.add_argument(
"--print_loss",
default=False,
action="store_true",
help="whether print loss during training",
)
parser.add_argument("--lr", default=0.2, type=float, help="learning rate")
# optimization settings
parser.add_argument(
"--mix",
default=False,
action="store_true",
help="mixed training with CPU and GPU",
)
parser.add_argument(
"--gpus",
type=int,
default=[-1],
nargs="+",
help="a list of active gpu ids, e.g. 0, used with --mix",
)
parser.add_argument(
"--only_cpu",
default=False,
action="store_true",
help="training with CPU",
)
parser.add_argument(
"--only_gpu",
default=False,
action="store_true",
help="training with a single GPU (all of the parameters are moved on the GPU)",
)
parser.add_argument(
"--async_update",
default=False,
action="store_true",
help="mixed training asynchronously, recommend not to use this",
)
parser.add_argument(
"--fast_neg",
default=False,
action="store_true",
help="do negative sampling inside a batch",
)
parser.add_argument(
"--num_threads",
default=2,
type=int,
help="number of threads used for each CPU-core/GPU",
)
parser.add_argument(
"--num_sampler_threads",
default=2,
type=int,
help="number of threads used for sampling",
)
args = parser.parse_args()
if args.async_update:
assert args.mix, "--async_update only with --mix"
start_time = time.time()
trainer = LineTrainer(args)
trainer.train()
print("Total used time: %.2f" % (time.time() - start_time))