This is an example of implementing NGNN for link prediction in DGL.
We use a model-agnostic methodology, namely Network In Graph Neural Network (NGNN), which allows arbitrary GNN models to increase their model capacity.
The script in this folder experiments full-batch GCN/GraphSage (with/without NGNN) on the datasets: ogbl-ddi, ogbl-collab and ogbl-ppa.
ogb>=1.3.3
torch>=1.11.0
dgl>=0.8
We do not fix random seeds at all, and take over 10 runs for all models. All models are trained on a single V100 GPU with 16GB memory.
test set | validation set | #parameters | |||||
---|---|---|---|---|---|---|---|
Hits@20 | Hits@50 | Hits@100 | Hits@20 | Hits@50 | Hits@100 | ||
GCN+NGNN(paper) | 48.22% ± 7.00% | 82.56% ± 4.03% | 89.48% ± 1.68% | 65.95% ± 1.16% | 70.24% ± 0.50% | 72.54% ± 0.62% | 1,487,361 |
GCN+NGNN(ours; 50runs) | 54.83% ± 15.81% | 93.15% ± 2.59% | 97.05% ± 0.56% | 71.21% ± 0.38% | 73.55% ± 0.25% | 76.24% ± 1.33% | |
GraphSage+NGNN(paper) | 60.75% ± 4.94% | 84.58% ± 1.89% | 92.58% ± 0.88% | 68.05% ± 0.68% | 71.14% ± 0.33% | 72.77% ± 0.09% | 1,618,433 |
GraphSage+NGNN(ours; 50runs) | 57.70% ± 15.23% | 96.18% ± 0.94% | 98.58% ± 0.17% | 73.23% ± 0.40% | 87.20% ± 5.29% | 98.71% ± 0.22% |
A 3-layer MLP is used as LinkPredictor here, while a 2-layer one is used by the NGNN paper. This is the main reason for the better performance.
- GCN + NGNN
python main.py --dataset ogbl-ddi --device 0 --ngnn_type input --epochs 800 --dropout 0.5 --num_layers 2 --lr 0.0025 --batch_size 16384 --runs 50
- GraphSage + NGNN
python main.py --dataset ogbl-ddi --device 1 --ngnn_type input --use_sage --epochs 600 --dropout 0.25 --num_layers 2 --lr 0.0012 --batch_size 32768 --runs 50
test set | validation set | #parameters | |||||
---|---|---|---|---|---|---|---|
Hits@10 | Hits@50 | Hits@100 | Hits@10 | Hits@50 | Hits@100 | ||
GCN+NGNN(paper) | 36.69% ± 0.82% | 51.83% ± 0.50% | 57.41% ± 0.22% | 44.97% ± 0.97% | 60.84% ± 0.63% | 66.09% ± 0.30% | 428,033 |
GCN+NGNN(ours) | 39.29% ± 1.21% | 53.48% ± 0.40% | 58.34% ± 0.45% | 48.28% ± 1.39% | 62.73% ± 0.40% | 67.13% ± 0.39% | |
GraphSage+NGNN(paper) | 36.83% ± 2.56% | 52.62% ± 1.04% | 57.96% ± 0.56% | 45.62% ± 2.56% | 61.34% ± 1.05% | 66.26% ± 0.44% | 591,873 |
GraphSage+NGNN(ours) | 40.30% ± 1.03% | 53.59% ± 0.56% | 58.75% ± 0.57% | 49.85% ± 1.07% | 62.81% ± 0.46% | 67.33% ± 0.38% |
- GCN + NGNN
python main.py --dataset ogbl-collab --device 2 --ngnn_type hidden --epochs 600 --dropout 0.2 --num_layers 3 --lr 0.001 --batch_size 32768 --runs 10
- GraphSage + NGNN
python main.py --dataset ogbl-collab --device 3 --ngnn_type input --use_sage --epochs 800 --dropout 0.2 --num_layers 3 --lr 0.0005 --batch_size 32768 --runs 10
test set | validation set | #parameters | |||||
---|---|---|---|---|---|---|---|
Hits@10 | Hits@50 | Hits@100 | Hits@10 | Hits@50 | Hits@100 | ||
GCN+NGNN(paper) | 5.64% ± 0.93% | 18.44% ± 1.88% | 26.78% ± 0.9% | 8.14% ± 0.71% | 19.69% ± 0.94% | 27.86% ± 0.81% | 673,281 |
GCN+NGNN(ours) | 13.07% ± 3.24% | 28.55% ± 1.62% | 36.83% ± 0.99% | 16.36% ± 1.89% | 30.56% ± 0.72% | 38.34% ± 0.82% | 410,113 |
GraphSage+NGNN(paper) | 3.52% ± 1.24% | 15.55% ± 1.92% | 24.45% ± 2.34% | 5.59% ± 0.93% | 17.21% ± 0.69% | 25.42% ± 0.50% | 819,201 |
GraphSage+NGNN(ours) | 11.73% ± 2.42% | 29.88% ± 1.84% | 40.05% ± 1.38% | 14.73% ± 2.36% | 31.59% ± 1.72% | 40.58% ± 1.23% | 556,033 |
The main difference between this implementation and NGNN paper is the position of NGNN (all -> input).
- GCN + NGNN
python main.py --dataset ogbl-ppa --device 4 --ngnn_type input --epochs 80 --dropout 0.2 --num_layers 3 --lr 0.001 --batch_size 49152 --runs 10
- GraphSage + NGNN
python main.py --dataset ogbl-ppa --device 5 --ngnn_type input --use_sage --epochs 80 --dropout 0.2 --num_layers 3 --lr 0.001 --batch_size 49152 --runs 10
@article{DBLP:journals/corr/abs-2111-11638,
author = {Xiang Song and
Runjie Ma and
Jiahang Li and
Muhan Zhang and
David Paul Wipf},
title = {Network In Graph Neural Network},
journal = {CoRR},
volume = {abs/2111.11638},
year = {2021},
url = {https://arxiv.org/abs/2111.11638},
eprinttype = {arXiv},
eprint = {2111.11638},
timestamp = {Fri, 26 Nov 2021 13:48:43 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-11638.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}