Skip to content

Latest commit

 

History

History

ogc

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Optimized Graph Convolution (OGC)

This DGL example implements the OGC method from the paper: From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited. With only one trainable layer, OGC is a very simple but powerful graph convolution method.

Example Implementor

This example was implemented by Sinuo Xu when she was an undergraduate at SJTU.

Dependencies

Python 3.11.5 PyTorch 2.0.1 DGL 1.1.2 scikit-learn 1.3.1

Dataset

The DGL's built-in Cora, Pubmed and Citeseer datasets, as follows:

Dataset #Nodes #Edges #Feats #Classes #Train Nodes #Val Nodes #Test Nodes
Citeseer 3,327 9,228 3,703 6 120 500 1000
Cora 2,708 10,556 1,433 7 140 500 1000
Pubmed 19,717 88,651 500 3 60 500 1000

Usage

python main.py --dataset cora
python main.py --dataset citeseer
python main.py --dataset pubmed

Performance

Dataset Cora Citeseer Pubmed
OGC (DGL) 86.9(±0.2) 77.4(±0.1) 83.6(±0.1)
OGC (Reported) 86.9(±0.0) 77.4(±0.0) 83.4(±0.0)