- Paper link: https://arxiv.org/abs/1609.02907
- Author's code repo: https://github.com/tkipf/gcn. Note that the original code is implemented with Tensorflow for the paper.
- Tensorflow 2.1+
- requests
bash pip install tensorflow requests export DGLBACKEND=tensorflow
The folder contains three implementations of GCN:
gcn.py
uses DGL's predefined graph convolution module.gcn_mp.py
uses user-defined message and reduce functions.gcn_builtin.py
improves fromgcn_mp.py
by using DGL's builtin functions so SPMV optimization could be applied.
Run with following (available dataset: "cora", "citeseer", "pubmed")
python3 train.py --dataset cora --gpu 0 --self-loop
- cora: ~0.810 (0.79-0.83) (paper: 0.815)
- citeseer: 0.707 (paper: 0.703)
- pubmed: 0.792 (paper: 0.790)