-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjust_prs.py
191 lines (161 loc) · 7.92 KB
/
just_prs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from oakvar import BasePostAggregator
import sqlite3
from sqlite3 import Error
from pathlib import Path
import polars as pl
import urllib
SUM = "sum"
TOTAL = "total"
COUNT = "count"
TITLE = "title"
INVERS = "invers"
class CravatPostAggregator (BasePostAggregator):
prs: dict = {}
prs_names: list = []
# prs5_rsids = []
sql_get_prs: str = """SELECT name, title, total, invers FROM prs;"""
def check(self) -> bool:
return True
def setup(self) -> None:
self.sql_file:str = str(Path(__file__).parent) + "/data/prs.sqlite"
if Path(self.sql_file).exists():
self.prsconn:sqlite3.Connection = sqlite3.connect(self.sql_file)
self.prscursor:sqlite3.Cursor = self.prsconn.cursor()
self.prscursor.execute(self.sql_get_prs)
rows:tuple = self.prscursor.fetchall()
for row in rows:
self.prs_names.append(row[0])
self.prs[row[0]] = {SUM: 0, COUNT: 0, TITLE: row[1], TOTAL: int(row[2]), INVERS: int(row[3])}
sql_create:str = """ CREATE TABLE IF NOT EXISTS prs (
id integer NOT NULL PRIMARY KEY,
name text,
sum float,
avg float,
count int,
title text,
total int,
percent int,
fraction float,
invers text
)"""
self.result_path:Path = Path(self.output_dir, self.run_name + "_longevity.sqlite")
self.result_conn:sqlite3.Connection = sqlite3.connect(self.result_path)
self.result_cursor:sqlite3.Cursor = self.result_conn.cursor()
self.result_cursor.execute(sql_create)
self.result_conn.commit()
self.result_cursor.execute("DELETE FROM prs;")
def get_prs_dataframe(self, name: str) -> pl.DataFrame:
import platform
sql:str = f"SELECT pos, chrom, effect_allele, weight FROM prs, weights WHERE prs.name = '{name}' AND prs.id = weights.prsid"
ol_pl = platform.platform()
if ol_pl.startswith("Windows"):
conn_url = f"sqlite://{urllib.parse.quote(self.sql_file)}"
else:
conn_url = f"sqlite://{self.sql_file}"
return pl.read_database(sql, conn_url)
def save_debug_info(self, name, df1:pl.DataFrame, df2:pl.DataFrame):
df = df1.join(df2, how="outer", on="key")
df = df.select(['dbsnp__rsid', 'base__chrom', 'base__pos', "effect_allele", 'base__ref_base', 'base__alt_base', "weight"])
df = df.sort(by='dbsnp__rsid')
df.write_csv(Path(self.output_dir, "prs_debug_"+name+".tsv"), separator="\t")
def calculate_prs(self, data_df: pl.DataFrame, name: str) -> tuple:
prs_df:pl.DataFrame = self.get_prs_dataframe(name)
prs_df = prs_df.with_columns((pl.col('chrom') + pl.col('pos').cast(pl.datatypes.Utf8)).alias("key"))
unite:pl.DataFrame = data_df.join(prs_df, left_on='key', right_on="key")
unite1 = unite.filter(pl.col("A") == pl.col("effect_allele"))
unite2 = unite.filter(pl.col("B") == pl.col("effect_allele"))
self.save_debug_info(name, unite1, unite2)
res1:pl.Series = unite1.select(pl.col("weight")).sum()
res2:pl.Series = unite2.select(pl.col("weight")).sum()
#TODO: negative join for ref homo zygot
# anti_unite = prs_df.join(data_df, left_on="rsid", right_on="dbsnp__rsid", how="anti")
# res3 = anti_unite.filter(pl.col("effect_allele") == pl.col("ref")).select(pl.col("weight")).sum() * 2
return float(res1.item()) + float(res2.item()), unite.shape[0]
def process_file(self) -> None:
# self._close_db_connection()
data_df = self.get_df("variant", None, 0)
data_df = data_df.select(['base__pos', 'vcfinfo__zygosity', 'base__ref_base', 'base__alt_base', 'base__chrom', 'dbsnp__rsid'])
data_df = data_df.with_columns(pl.col('vcfinfo__zygosity').fill_null("het"))
data_df = data_df.with_columns((pl.col('base__chrom') + pl.col('base__pos').cast(pl.datatypes.Utf8)).alias("key"))
het_zygot = data_df.filter(pl.col('vcfinfo__zygosity') == 'het')
het_zygot = het_zygot.with_columns([pl.col('base__ref_base').alias("A"), pl.col('base__alt_base').alias("B")])
hom_zygot = data_df.filter(pl.col('vcfinfo__zygosity') == 'hom')
hom_zygot = hom_zygot.with_columns([pl.col('base__alt_base').alias("A"), pl.col('base__alt_base').alias("B")])
data_df = het_zygot.vstack(hom_zygot)
for name in self.prs_names:
sum, count = self.calculate_prs(data_df, name)
self.prs[name][SUM] = sum
self.prs[name][COUNT] = count
# self._open_db_connection()
def cleanup(self) -> None:
if self.result_cursor is not None:
self.result_cursor.close()
if self.result_conn is not None:
self.result_conn.commit()
self.result_conn.close()
if self.prscursor is not None:
self.prscursor.close()
if self.prsconn is not None:
self.prsconn.close()
# def annotate (self, input_data):
# rsid:str = str(input_data['dbsnp__rsid'])
# if rsid == '':
# return
#
# if not rsid.startswith("rs"):
# rsid = 'rs' + rsid
# alt:str = input_data['base__alt_base']
# ref:str = input_data['base__ref_base']
# chrom:str = input_data['base__chrom']
#
# query:str = f"SELECT prs.name, weights.weight, position.effect_allele FROM position, prs, weights WHERE chrom = '{chrom}'" \
# f" AND rsid = '{rsid}' AND weights.posid = position.id AND weights.prsid = prs.id"
#
# self.prscursor.execute(query)
# rows:tuple = self.prscursor.fetchall()
#
# if len(rows) == 0:
# return
#
# zygot:str = input_data['vcfinfo__zygosity']
# for name, weight, allele in rows:
# if not (allele == alt or (allele == ref and zygot == 'het')):
# continue
# weight:float = float(weight)
# if allele == alt and zygot == 'hom':
# weight = 2 * weight
#
# self.prs[name][SUM] += weight
# self.prs[name][COUNT] += 1
def get_percent(self, name:str, value:float) -> float:
sql_get_percent:str = f"SELECT 'min', percent, max(value) FROM percentiles, prs WHERE percentiles.prs_id = prs.id AND prs.name = '{name}' AND value <= {value} UNION " \
f"SELECT 'max', percent, min(value) FROM percentiles, prs WHERE percentiles.prs_id = prs.id AND prs.name = '{name}' AND value >= {value}"
self.prscursor.execute(sql_get_percent)
rows:tuple = self.prscursor.fetchall()
for row in rows:
if row[0] == 'min':
min_percent:float = row[1]
min_value:float = row[2]
if row[0] == 'max':
max_percent:float = row[1]
max_value:float = row[2]
if min_value is None:
return max_percent
if max_value is None:
return min_percent
if abs(min_value - value) > abs(max_value - value):
return max_percent
else:
return min_percent
def postprocess(self) -> None:
sql:str = """ INSERT INTO prs (name, sum, avg, count, title, total, percent, fraction, invers) VALUES (?,?,?,?,?,?,?,?,?);"""
for name in self.prs_names:
avg:float = 0
if self.prs[name][COUNT] > 0:
avg = self.prs[name][SUM] / (self.prs[name][COUNT] * 2)
percent:float = self.get_percent(name, self.prs[name][SUM])
if type(percent) is not float:
percent = 0.01
task:tuple = (name, self.prs[name][SUM], avg, self.prs[name][COUNT], self.prs[name][TITLE], self.prs[name][TOTAL], int(percent * 100),
percent, self.prs[name][INVERS])
self.result_cursor.execute(sql, task)