-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSyntax.agda
151 lines (100 loc) · 2.94 KB
/
Syntax.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
module Syntax where
open import Data.Nat using (ℕ; zero; suc ;_+_; _*_; _∸_;_^_;_⊔_)
open import Data.String using (String)
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong)
open import Data.Bool using (Bool; true; false)
open import Data.Maybe
{-
e ::= n ‖ x ‖ e + e ‖ e × e (Exp)
n ::= ℕ (const)
x ::= String (var)
-}
data Exp : Set where
const : ℕ → Exp
var : String → Exp
_×'_ : Exp → Exp → Exp
_+'_ : Exp → Exp → Exp
infix 5 _×'_
infix 4 _+'_
-- Examples of expressions
-- (0 + 1) × z
exp1 = (const 0 +' const 1) ×' var "z"
‖_‖ : Exp → ℕ
‖ const x ‖ = 1
‖ var x ‖ = 1
‖ e ×' e' ‖ = 1 + ‖ e ‖ + ‖ e' ‖
‖ e +' e' ‖ = 1 + ‖ e ‖ + ‖ e' ‖
infix 4 _≤_
data _≤_ : ℕ → ℕ → Set where
≤-zero : ∀ {x : ℕ}
------------
→ zero ≤ x
≤-suc : ∀ {x y : ℕ}
→ x ≤ y
----------------
→ suc x ≤ suc y
≤-refl : ∀ {n : ℕ}
--------
→ n ≤ n
≤-refl {zero} = ≤-zero
≤-refl {suc n} = ≤-suc ≤-refl
≤-trans : ∀ {m n p : ℕ}
→ m ≤ n
→ n ≤ p
-----
→ m ≤ p
≤-trans ≤-zero _ = ≤-zero
≤-trans (≤-suc m≤n) (≤-suc n≤p) = ≤-suc (≤-trans m≤n n≤p)
depth : Exp → ℕ
depth (const x) = 1
depth (var x) = 1
depth (e ×' e') = depth e ⊔ depth e'
depth (e +' e') = depth e ⊔ depth e'
postulate
lemma-1 : ∀ {a b a' b' : ℕ}
→ (a ≤ a') → (b ≤ b')
-------------------------------
→ a ⊔ b ≤ suc ( a' + b' )
+-zero : ∀ (x : ℕ) → zero + x ≡ x
⊔-zero : ∀ (x : ℕ) → zero ⊔ x ≡ x
⊔-suc : ∀ (x y : ℕ) → (suc x ) ⊔ y ≡ suc (x ⊔ y)
suc-mono : ∀ (x y : ℕ)
→ x ≤ y
----------------
→ (suc x) ≤ (suc y)
prop : ∀ (a b : ℕ) → (a ⊔ b) ≤ (a + b)
prop zero b
rewrite (⊔-zero (zero ⊔ b))
| (+-zero (zero + b)) = ≤-refl
prop (suc a) b
rewrite (⊔-suc a b) = suc-mono (a ⊔ b) (a + b) (prop a b)
-- theorem
theorem-1 : ∀ (e : Exp ) → depth e ≤ ‖ e ‖
theorem-1 (const x) = ≤-suc ≤-zero
theorem-1 (var x) = ≤-suc ≤-zero
theorem-1 (e ×' e') = lemma-1 (theorem-1 e) (theorem-1 e')
theorem-1 (e +' e') = lemma-1 (theorem-1 e) (theorem-1 e')
{-
AUTOMATION EXAMPLE
(reflection)
-}
data ⊤ : Set where
tt : ⊤
data ⊥ : Set where
-- nothing
data Even : ℕ → Set where
isEven0 : Even 0
isEven+2 : {n : ℕ} → Even n → Even (2 + n)
even? : ℕ → Set
even? 0 = ⊤
even? 1 = ⊥
even? (suc (suc n)) = even? n
soundnessEven : {n : ℕ} → even? n → Even n
soundnessEven {0} tt = isEven0
soundnessEven {1} ()
soundnessEven {suc (suc n)} s = isEven+2 (soundnessEven s)
isEven8772 : Even 8772
isEven8772 = soundnessEven tt
isEven4 : Even 4
isEven4 = soundnessEven tt