-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyTailFit.py
109 lines (81 loc) · 4.64 KB
/
pyTailFit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 16 10:59:33 2021
@author: Danny Petschke
@email: [email protected]
"""
#*************************************************************************************************
#**")
#** Copyright (c) 2021 Danny Petschke. All rights reserved.
#**")
#** This program is free software: you can redistribute it and/or modify
#** it under the terms of the GNU General Public License as published by
#** the Free Software Foundation, either version 3 of the License, or
#** (at your option) any later version.
#**
#** This program is distributed in the hope that it will be useful,
#** but WITHOUT ANY WARRANTY; without even the implied warranty of
#** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#** GNU General Public License for more details.
#**")
#** You should have received a copy of the GNU General Public License
#** along with this program. If not, see http://www.gnu.org/licenses/.
#**
#** Contact: [email protected]
#**
#*************************************************************************************************
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def func_1(x,a,tau,b): # template function for mono-exp-decay model
return a*np.exp(-x/tau)+b
def func_2(x,a1,tau1,a2,tau2,b): # template function for bi-exp-decay model
return a1*np.exp(-x/tau1)+a2*np.exp(-x/tau2)+b
# add additional components/models like ...
# def func_3(x,a1,tau1,a2,tau2,a3,tau3,..,b):
# return a1*np.exp(-x/tau1)+a2*np.exp(-x/tau2)+a3*np.exp(-x/tau3)+ ... +b
def tail_fit(spectrum=[],
no_of_expected_decays=1,
no_chn_right_of_peak=200,
bin_width_in_ps=5.,
debug=True):
fit_start_index = int(np.argmax(spectrum)+no_chn_right_of_peak)
time = np.linspace(0.,len(spectrum),len(spectrum))*bin_width_in_ps
# apply error weightening ...
fit_weighting = np.ones(len(spectrum[fit_start_index:]))
for i in range(len(spectrum[fit_start_index:])):
val = 1./np.sqrt(spectrum[fit_start_index+i])
if np.isfinite(val):
fit_weighting[i] += val
# fit data ...
if no_of_expected_decays == 1: # mono-exp-decay ...
p0=[0.5*np.amax(spectrum),1000.,1.] # estimate start-values
popt,pcov = curve_fit(func_1,time[fit_start_index:],spectrum[fit_start_index:],maxfev=1000000,p0=p0,sigma=fit_weighting,absolute_sigma=True,bounds=(0,[1e10,142000.,1e10]))
fit_result = func_1(time[fit_start_index:],popt[0],popt[1],popt[2]) # resulting fit curve
puncertainties = np.sqrt(np.diag(pcov))
if debug:
plt.semilogy(time[fit_start_index:],spectrum[fit_start_index:],'bo',time[fit_start_index:],fit_result,'r-')
plt.show()
print('tau-1 = ({} +/- {}) ps'.format(popt[1],puncertainties[1]))
# print('amp-1 = ({} +/- {}) #' .format(popt[0],puncertainties[0]))
print('bkrd = ({} +/- {}) #' .format(popt[2],puncertainties[2]))
return time[fit_start_index:],spectrum[fit_start_index:],fit_result # return fit results ...
elif no_of_expected_decays == 2: # bi-exp-decay ...
p0=[0.5*np.amax(spectrum),1000.,0.5*np.amax(spectrum),1000.,1.] # estimate start-values
popt,pcov = curve_fit(func_2,time[fit_start_index:],spectrum[fit_start_index:],maxfev=1000000,p0=p0,sigma=fit_weighting,absolute_sigma=True,bounds=(0,[1e10,142000.,1e10,142000.,1e10]))
fit_result = func_2(time[fit_start_index:],popt[0],popt[1],popt[2],popt[3],popt[4]) # resulting fit curve ...
puncertainties = np.sqrt(np.diag(pcov))
if debug:
plt.semilogy(time[fit_start_index:],spectrum[fit_start_index:],'bo',time[fit_start_index:],fit_result,'r-')
plt.show()
exp_1 = func_1(time[fit_start_index:],popt[0],popt[1],0.)
exp_2 = func_1(time[fit_start_index:],popt[2],popt[3],0.)
I_1 = sum(exp_1)/(sum(exp_1)+sum(exp_2))
I_2 = sum(exp_2)/(sum(exp_1)+sum(exp_2))
if debug:
print('tau-1 = ({} +/- {}) ps'.format(popt[1],puncertainties[1]))
print('amp-1 = ({} +/- {}) # [>> {} %]' .format(popt[0],puncertainties[0],100.*I_1))
print('tau-2 = ({} +/- {}) ps'.format(popt[3],puncertainties[3]))
print('amp-2 = ({} +/- {}) # [>> {} %]' .format(popt[2],puncertainties[2],100.*I_2))
print('bkrd = ({} +/- {}) #' .format(popt[4],puncertainties[4]))
return time[fit_start_index:],spectrum[fit_start_index:],fit_result # return fit results ...