forked from delphes/delphes
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathExample4.C
270 lines (189 loc) · 9.24 KB
/
Example4.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*
This macro shows how to compute jet energy scale.
root -l examples/Example4.C'("delphes_output.root", "plots.root")'
The output ROOT file contains the pT(MC)/pT(Reco) distributions for
various pT(Reco) and |eta| bins. The peak value of such distribution is
interpreted as the jet energy correction to be applied for that
given pT(Reco), |eta| bin.
This can be done by modifying the "ScaleFormula" input parameter to
the JetEnergyScale module in the delphes_card_XXX.tcl
e.g a smooth function:
set ScaleFormula { sqrt(3.0 - 0.1*(abs(eta)))^2 / pt + 1.0) }
or a binned function:
set ScaleFormula {(abs(eta) > 0.0 && abs(eta) <= 2.5) * (pt > 20.0 && pt <= 50.0) * (1.10) +
(abs(eta) > 0.0 && abs(eta) <= 2.5) * (pt > 50.0 && pt <= 100.0) * (1.05) +
(abs(eta) > 0.0 && abs(eta) <= 2.5) * (pt > 100.0) * (1.00) +
(abs(eta) > 2.5 && abs(eta) <= 5.0) * (pt > 20.0 && pt <= 50.0) * (1.10) +
(abs(eta) > 2.5 && abs(eta) <= 5.0) * (pt > 50.0 && pt <= 100.0) * (1.05) +
(abs(eta) > 2.5 && abs(eta) <= 5.0) * (pt > 100.0) * (1.00)}
Be aware that a binned jet energy scale can produce "steps" in the corrected
jet pt distribution ...
*/
#ifdef __CLING__
R__LOAD_LIBRARY(libDelphes)
#include "classes/DelphesClasses.h"
#include "external/ExRootAnalysis/ExRootTreeReader.h"
#include "external/ExRootAnalysis/ExRootResult.h"
#else
class ExRootTreeReader;
class ExRootResult;
#endif
//------------------------------------------------------------------------------
struct TestPlots
{
TH1 *fJetPT;
TH1 *fJetRes_Pt_20_50_Eta_0_25;
TH1 *fJetRes_Pt_20_50_Eta_25_5;
TH1 *fJetRes_Pt_50_100_Eta_0_25;
TH1 *fJetRes_Pt_50_100_Eta_25_5;
TH1 *fJetRes_Pt_100_200_Eta_0_25;
TH1 *fJetRes_Pt_100_200_Eta_25_5;
TH1 *fJetRes_Pt_200_500_Eta_0_25;
TH1 *fJetRes_Pt_200_500_Eta_25_5;
TH1 *fJetRes_Pt_500_inf_Eta_0_25;
TH1 *fJetRes_Pt_500_inf_Eta_25_5;
};
//------------------------------------------------------------------------------
class ExRootResult;
class ExRootTreeReader;
//------------------------------------------------------------------------------
void BookHistograms(ExRootResult *result, TestPlots *plots)
{
TLegend *legend;
TPaveText *comment;
plots->fJetPT = result->AddHist1D(
"jet_pt", "p_{T}^{jet}",
"p_{T}^{jet} GeV/c", "number of jets",
100, 0.0, 1000.0);
plots->fJetRes_Pt_20_50_Eta_0_25 = result->AddHist1D(
"jet_delta_pt_20_50_cen", "p_{T}^{truth,parton}/p_{T}^{jet} , 20 < p_{T} < 50 , 0 < | #eta | < 2.5 ",
"p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets",
100, 0.0, 2.0);
plots->fJetRes_Pt_20_50_Eta_0_25->SetStats();
plots->fJetRes_Pt_20_50_Eta_25_5 = result->AddHist1D(
"jet_delta_pt_20_50_fwd", "p_{T}^{truth,parton}/p_{T}^{jet} , 20 < p_{T} < 50 , 2.5 < | #eta | < 5 ",
"p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets",
100, 0.0, 2.0);
plots->fJetRes_Pt_20_50_Eta_25_5->SetStats();
plots->fJetRes_Pt_50_100_Eta_0_25 = result->AddHist1D(
"jet_delta_pt_50_100_cen", "p_{T}^{truth,parton}/p_{T}^{jet} , 50 < p_{T} < 100 , 0 < | #eta | < 2.5 ",
"p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets",
100, 0.0, 2.0);
plots->fJetRes_Pt_50_100_Eta_0_25->SetStats();
plots->fJetRes_Pt_50_100_Eta_25_5 = result->AddHist1D(
"jet_delta_pt_50_100_fwd", "p_{T}^{truth,parton}/p_{T}^{jet} , 50 < p_{T} < 100 , 2.5 < | #eta | < 5 ",
"p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets",
100, 0.0, 2.0);
plots->fJetRes_Pt_50_100_Eta_25_5->SetStats();
plots->fJetRes_Pt_100_200_Eta_0_25 = result->AddHist1D(
"jet_delta_pt_100_200_cen", "p_{T}^{truth,parton}/p_{T}^{jet} , 100 < p_{T} < 200 , 0 < | #eta | < 2.5 ",
"p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets",
100, 0.0, 2.0);
plots->fJetRes_Pt_100_200_Eta_0_25->SetStats();
plots->fJetRes_Pt_100_200_Eta_25_5 = result->AddHist1D(
"jet_delta_pt_100_200_fwd", "p_{T}^{truth,parton}/p_{T}^{jet} , 100 < p_{T} < 200 , 2.5 < | #eta | < 5 ",
"p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets",
100, 0.0, 2.0);
plots->fJetRes_Pt_100_200_Eta_25_5->SetStats();
plots->fJetRes_Pt_200_500_Eta_0_25 = result->AddHist1D(
"jet_delta_pt_200_500_cen", "p_{T}^{truth,parton}/p_{T}^{jet} , 200 < p_{T} < 500 , 0 < | #eta | < 2.5 ",
"p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets",
100, 0.0, 2.0);
plots->fJetRes_Pt_200_500_Eta_0_25->SetStats();
plots->fJetRes_Pt_200_500_Eta_25_5 = result->AddHist1D(
"jet_delta_pt_200_500_fwd", "p_{T}^{truth,parton}/p_{T}^{jet} , 200 < p_{T} < 500 , 2.5 < | #eta | < 5 ",
"p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets",
100, 0.0, 2.0);
plots->fJetRes_Pt_200_500_Eta_25_5->SetStats();
plots->fJetRes_Pt_500_inf_Eta_0_25 = result->AddHist1D(
"jet_delta_pt_500_1000_cen", "p_{T}^{truth,parton}/p_{T}^{jet} , 500 < p_{T} < 1000, 0 < | #eta | < 2.5 ",
"p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets",
100, 0.0, 2.0);
plots->fJetRes_Pt_500_inf_Eta_0_25->SetStats();
plots->fJetRes_Pt_500_inf_Eta_25_5 = result->AddHist1D(
"jet_delta_pt_500_1000_fwd", "p_{T}^{truth,parton}/p_{T}^{jet} , 500 < p_{T} < 1000, 2.5 < | #eta | < 5 ",
"p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets",
100, 0.0, 2.0);
plots->fJetRes_Pt_500_inf_Eta_25_5->SetStats();
}
//------------------------------------------------------------------------------
void AnalyseEvents(ExRootTreeReader *treeReader, TestPlots *plots)
{
TClonesArray *branchParticle = treeReader->UseBranch("Particle");
TClonesArray *branchGenJet = treeReader->UseBranch("GenJet");
TClonesArray *branchJet = treeReader->UseBranch("Jet");
Long64_t allEntries = treeReader->GetEntries();
cout << "** Chain contains " << allEntries << " events" << endl;
Jet *jet, *genjet;
GenParticle *particle;
TObject *object;
TLorentzVector jetMomentum, genJetMomentum, bestGenJetMomentum;
Float_t deltaR;
Float_t pt, eta;
Long64_t entry;
Int_t i, j;
// Loop over all events
for(entry = 0; entry < allEntries; ++entry)
{
// Load selected branches with data from specified event
treeReader->ReadEntry(entry);
if(entry%500 == 0) cout << "Event number: "<< entry <<endl;
// Loop over all reconstructed jets in event
for(i = 0; i < branchJet->GetEntriesFast(); ++i)
{
jet = (Jet*) branchJet->At(i);
jetMomentum = jet->P4();
plots->fJetPT->Fill(jetMomentum.Pt());
deltaR = 999;
// Loop over all hard partons in event
for(j = 0; j < branchParticle->GetEntriesFast(); ++j)
{
particle = (GenParticle*) branchParticle->At(j);
genJetMomentum = particle->P4();
// this is simply to avoid warnings from initial state particle
// having infite rapidity ...
if(genJetMomentum.Px() == 0 && genJetMomentum.Py() == 0) continue;
// take the closest parton candidate
if(genJetMomentum.DeltaR(jetMomentum) < deltaR)
{
deltaR = genJetMomentum.DeltaR(jetMomentum);
bestGenJetMomentum = genJetMomentum;
}
}
if(deltaR < 0.3)
{
pt = jetMomentum.Pt();
eta = TMath::Abs(jetMomentum.Eta());
if(pt > 20.0 && pt < 50.0 && eta > 0.0 && eta < 2.5) plots -> fJetRes_Pt_20_50_Eta_0_25->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt());
if(pt > 20.0 && pt < 50.0 && eta > 2.5 && eta < 5.0) plots -> fJetRes_Pt_20_50_Eta_25_5->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt());
if(pt > 50.0 && pt < 100.0 && eta > 0.0 && eta < 2.5) plots -> fJetRes_Pt_50_100_Eta_0_25->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt());
if(pt > 50.0 && pt < 100.0 && eta > 2.5 && eta < 5.0) plots -> fJetRes_Pt_50_100_Eta_25_5->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt());
if(pt > 100.0 && pt < 200.0 && eta > 0.0 && eta < 2.5) plots -> fJetRes_Pt_100_200_Eta_0_25->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt());
if(pt > 100.0 && pt < 200.0 && eta > 2.5 && eta < 5.0) plots -> fJetRes_Pt_100_200_Eta_25_5->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt());
if(pt > 200.0 && pt < 500.0 && eta > 0.0 && eta < 2.5) plots -> fJetRes_Pt_200_500_Eta_0_25->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt());
if(pt > 200.0 && pt < 500.0 && eta > 2.5 && eta < 5.0) plots -> fJetRes_Pt_200_500_Eta_25_5->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt());
if(pt > 500.0 && eta > 0.0 && eta < 2.5) plots -> fJetRes_Pt_500_inf_Eta_0_25->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt());
if(pt > 500.0 && eta > 2.5 && eta < 5.0) plots -> fJetRes_Pt_500_inf_Eta_25_5->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt());
}
}
}
}
//------------------------------------------------------------------------------
void Example4(const char *inputFile, const char *outputFile)
{
gSystem->Load("libDelphes");
TChain *chain = new TChain("Delphes");
chain->Add(inputFile);
ExRootTreeReader *treeReader = new ExRootTreeReader(chain);
ExRootResult *result = new ExRootResult();
TestPlots *plots = new TestPlots;
BookHistograms(result, plots);
AnalyseEvents(treeReader, plots);
result->Write(outputFile);
cout << "** Exiting..." << endl;
delete plots;
delete result;
delete treeReader;
delete chain;
}
//------------------------------------------------------------------------------